{"title":"具有鞍-焦点异斜连接的三维保守流的周期扰动","authors":"A. Murillo , A. Vieiro","doi":"10.1016/j.cnsns.2025.108620","DOIUrl":null,"url":null,"abstract":"<div><div>The 2-jet normal form of the elliptic volume-preserving Hopf-zero bifurcation provides a one-parameter family of volume-preserving vector fields with a pair of saddle-foci points whose 2-dimensional invariant manifolds form a 2-sphere of spiralling heteroclinic orbits. We study the effect of an external periodic forcing on the splitting of these 2-dimensional invariant manifolds. The internal frequency (related to the foci and already presented in the unperturbed system) interacts with an external one (coming from the periodic forcing). If both frequencies are incommensurable, this interaction leads to quasi-periodicity in the splitting behaviour, which is exponentially small in (a suitable function of) the unfolding parameter of the Hopf-zero bifurcation. The corresponding behaviour is described by a Melnikov function. The changes of dominant harmonics correspond to primary quadratic tangencies between the invariant manifolds. Combining analytical and numerical results, we provide a detailed description of the asymptotic behaviour of the splitting under concrete arithmetic properties of the frequencies.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"143 ","pages":"Article 108620"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic perturbation of a 3D conservative flow with a heteroclinic connection to saddle-foci\",\"authors\":\"A. Murillo , A. Vieiro\",\"doi\":\"10.1016/j.cnsns.2025.108620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 2-jet normal form of the elliptic volume-preserving Hopf-zero bifurcation provides a one-parameter family of volume-preserving vector fields with a pair of saddle-foci points whose 2-dimensional invariant manifolds form a 2-sphere of spiralling heteroclinic orbits. We study the effect of an external periodic forcing on the splitting of these 2-dimensional invariant manifolds. The internal frequency (related to the foci and already presented in the unperturbed system) interacts with an external one (coming from the periodic forcing). If both frequencies are incommensurable, this interaction leads to quasi-periodicity in the splitting behaviour, which is exponentially small in (a suitable function of) the unfolding parameter of the Hopf-zero bifurcation. The corresponding behaviour is described by a Melnikov function. The changes of dominant harmonics correspond to primary quadratic tangencies between the invariant manifolds. Combining analytical and numerical results, we provide a detailed description of the asymptotic behaviour of the splitting under concrete arithmetic properties of the frequencies.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"143 \",\"pages\":\"Article 108620\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425000310\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425000310","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Periodic perturbation of a 3D conservative flow with a heteroclinic connection to saddle-foci
The 2-jet normal form of the elliptic volume-preserving Hopf-zero bifurcation provides a one-parameter family of volume-preserving vector fields with a pair of saddle-foci points whose 2-dimensional invariant manifolds form a 2-sphere of spiralling heteroclinic orbits. We study the effect of an external periodic forcing on the splitting of these 2-dimensional invariant manifolds. The internal frequency (related to the foci and already presented in the unperturbed system) interacts with an external one (coming from the periodic forcing). If both frequencies are incommensurable, this interaction leads to quasi-periodicity in the splitting behaviour, which is exponentially small in (a suitable function of) the unfolding parameter of the Hopf-zero bifurcation. The corresponding behaviour is described by a Melnikov function. The changes of dominant harmonics correspond to primary quadratic tangencies between the invariant manifolds. Combining analytical and numerical results, we provide a detailed description of the asymptotic behaviour of the splitting under concrete arithmetic properties of the frequencies.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.