锌离子杂化电容器多孔碳集中介孔和边缘氮的原位工程研究。

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-05-01 Epub Date: 2025-01-21 DOI:10.1016/j.jcis.2025.01.165
Caiwei Wang, Zicheng Li, Wenli Zhang, Bo Chen, Yuanyuan Ge, Zhili Li, Xuemin Cui
{"title":"锌离子杂化电容器多孔碳集中介孔和边缘氮的原位工程研究。","authors":"Caiwei Wang, Zicheng Li, Wenli Zhang, Bo Chen, Yuanyuan Ge, Zhili Li, Xuemin Cui","doi":"10.1016/j.jcis.2025.01.165","DOIUrl":null,"url":null,"abstract":"<p><p>Porous carbons with large surface area (>3000 m<sup>2</sup>/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons. Herein, a strategy of melamine-boosted K<sub>2</sub>CO<sub>3</sub> activation is proposed to prepare edge-nitrogen-doped hierarchical porous carbons (ENHPCs). KOCN generated by K<sub>2</sub>CO<sub>3</sub> reacting cyano groups (-CN) couples with K<sub>2</sub>CO<sub>3</sub> activation engineers large-surface-area porous carbon. KCN in-situ generated by KOCN etching carbon atoms plays a template role in constructing centralized mesopores. Edge-nitrogen skeleton is formed by g-C<sub>3</sub>N<sub>4</sub> losing -CN, and then in-situ integrated into porous carbon skeleton. The efficiency of melamine-boosted K<sub>2</sub>CO<sub>3</sub> activation reaches the highest at a melamine/lignin mass ratio of 0.5, where the optimized ENHPCs (ENHPC-0.5) have a large surface area of 3122 m<sup>2</sup>/g, a mesopore architecture (2.8 nm) with a mesoporosity of 60.5 % and a moderate edge-N content of 1.9 at.%. ENHPC-0.5 cathode displays a high capacitance of 350F/g at 0.1 A/g, an excellent rate capability of 129F/g at 20 A/g and a robust cycling life. This work provides a novel strategy to prepare heteroatom-doped high-surface-area porous carbons for zinc ion hybrid capacitors.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"674-684"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors.\",\"authors\":\"Caiwei Wang, Zicheng Li, Wenli Zhang, Bo Chen, Yuanyuan Ge, Zhili Li, Xuemin Cui\",\"doi\":\"10.1016/j.jcis.2025.01.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Porous carbons with large surface area (>3000 m<sup>2</sup>/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons. Herein, a strategy of melamine-boosted K<sub>2</sub>CO<sub>3</sub> activation is proposed to prepare edge-nitrogen-doped hierarchical porous carbons (ENHPCs). KOCN generated by K<sub>2</sub>CO<sub>3</sub> reacting cyano groups (-CN) couples with K<sub>2</sub>CO<sub>3</sub> activation engineers large-surface-area porous carbon. KCN in-situ generated by KOCN etching carbon atoms plays a template role in constructing centralized mesopores. Edge-nitrogen skeleton is formed by g-C<sub>3</sub>N<sub>4</sub> losing -CN, and then in-situ integrated into porous carbon skeleton. The efficiency of melamine-boosted K<sub>2</sub>CO<sub>3</sub> activation reaches the highest at a melamine/lignin mass ratio of 0.5, where the optimized ENHPCs (ENHPC-0.5) have a large surface area of 3122 m<sup>2</sup>/g, a mesopore architecture (2.8 nm) with a mesoporosity of 60.5 % and a moderate edge-N content of 1.9 at.%. ENHPC-0.5 cathode displays a high capacitance of 350F/g at 0.1 A/g, an excellent rate capability of 129F/g at 20 A/g and a robust cycling life. This work provides a novel strategy to prepare heteroatom-doped high-surface-area porous carbons for zinc ion hybrid capacitors.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"685 \",\"pages\":\"674-684\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.01.165\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.165","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有大表面积(> 3000m2 /g)的多孔碳和杂原子掺杂剂作为锌离子杂化电容器的电极材料具有广阔的应用前景。集中的介孔可以有效地加速动力学,边缘氮可以有效地增强假电容能力。在大表面积多孔碳中设计集中的介孔和边缘氮是一个巨大的挑战。本文提出了一种三聚氰胺促进K2CO3活化的策略来制备边缘氮掺杂的分层多孔碳(ENHPCs)。由K2CO3与氰基(-CN)反应生成的KOCN与K2CO3活化形成大表面积多孔碳。通过KCN蚀刻碳原子原位生成的KCN在集中介孔的构建中起模板作用。g-C3N4损失-CN形成边氮骨架,然后原位整合到多孔碳骨架中。三聚氰胺促进K2CO3活化的效率在三聚氰胺/木质素质量比为0.5时达到最高,优化后的enhpc (ENHPC-0.5)具有3122 m2/g的大表面积,介孔结构(2.8 nm),介孔率为60.5%,边氮含量为1.9 at.%。ENHPC-0.5阴极在0.1 a /g时具有350F/g的高电容,在20 a /g时具有129F/g的优良速率能力,并且具有较长的循环寿命。本研究为制备锌离子杂化电容器用杂原子掺杂高表面积多孔碳提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors.

Porous carbons with large surface area (>3000 m2/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons. Herein, a strategy of melamine-boosted K2CO3 activation is proposed to prepare edge-nitrogen-doped hierarchical porous carbons (ENHPCs). KOCN generated by K2CO3 reacting cyano groups (-CN) couples with K2CO3 activation engineers large-surface-area porous carbon. KCN in-situ generated by KOCN etching carbon atoms plays a template role in constructing centralized mesopores. Edge-nitrogen skeleton is formed by g-C3N4 losing -CN, and then in-situ integrated into porous carbon skeleton. The efficiency of melamine-boosted K2CO3 activation reaches the highest at a melamine/lignin mass ratio of 0.5, where the optimized ENHPCs (ENHPC-0.5) have a large surface area of 3122 m2/g, a mesopore architecture (2.8 nm) with a mesoporosity of 60.5 % and a moderate edge-N content of 1.9 at.%. ENHPC-0.5 cathode displays a high capacitance of 350F/g at 0.1 A/g, an excellent rate capability of 129F/g at 20 A/g and a robust cycling life. This work provides a novel strategy to prepare heteroatom-doped high-surface-area porous carbons for zinc ion hybrid capacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1