Alexey O Yanshin, Vitaly G Kiselev, Alexey V Baklanov
{"title":"Kinetic Isotope Effect in the Unfolding of a Protein Secondary Structure: Calculations for Beta-Sheet Polyglycine Dimers as a Model.","authors":"Alexey O Yanshin, Vitaly G Kiselev, Alexey V Baklanov","doi":"10.3390/biom15010092","DOIUrl":null,"url":null,"abstract":"<p><p>In the present work, we performed calculations of the kinetic isotope effect (KIE) on H/D, <sup>14</sup>N/<sup>15</sup>N, <sup>16</sup>O/<sup>18</sup>O, and <sup>12</sup>C/<sup>13</sup>C isotopic substitution in the dissociation of beta-sheet polyglycine dimers of different lengths into two monomer chains. This dissociation reaction, proceeding via breaking of the interchain hydrogen bonds (H-bonds), is considered to be a model of unfolding of the secondary structure of proteins. The calculated strengthening of the interchain hydrogen bonds N-H⋯O=C due to heavy isotope substitution decreases in the row H/D >> <sup>14</sup>N/<sup>15</sup>N > <sup>16</sup>O/<sup>18</sup>O > <sup>12</sup>C/<sup>13</sup>C. The KIE for H/D substitution, defined as the ratio of the rate constants k(H)k(D), was calculated with the use of a \"completely loose\" transition state model. The results of the calculations show that a very high H/D isotope effect can be achieved for proteins even with moderately long chains connected by dozens of interchain H-bonds. The results obtained also indicate that the heavy isotope substitution in the internal (interchain) and external H-bonds, located on the periphery of a dimer, can provide comparable effects on secondary structure stabilization.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010092","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Kinetic Isotope Effect in the Unfolding of a Protein Secondary Structure: Calculations for Beta-Sheet Polyglycine Dimers as a Model.
In the present work, we performed calculations of the kinetic isotope effect (KIE) on H/D, 14N/15N, 16O/18O, and 12C/13C isotopic substitution in the dissociation of beta-sheet polyglycine dimers of different lengths into two monomer chains. This dissociation reaction, proceeding via breaking of the interchain hydrogen bonds (H-bonds), is considered to be a model of unfolding of the secondary structure of proteins. The calculated strengthening of the interchain hydrogen bonds N-H⋯O=C due to heavy isotope substitution decreases in the row H/D >> 14N/15N > 16O/18O > 12C/13C. The KIE for H/D substitution, defined as the ratio of the rate constants k(H)k(D), was calculated with the use of a "completely loose" transition state model. The results of the calculations show that a very high H/D isotope effect can be achieved for proteins even with moderately long chains connected by dozens of interchain H-bonds. The results obtained also indicate that the heavy isotope substitution in the internal (interchain) and external H-bonds, located on the periphery of a dimer, can provide comparable effects on secondary structure stabilization.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.