Santiago Cepeda, Olga Esteban-Sinovas, Vikas Singh, Prakash Shetty, Aliasgar Moiyadi, Luke Dixon, Alistair Weld, Giulio Anichini, Stamatia Giannarou, Sophie Camp, Ilyess Zemmoura, Giuseppe Roberto Giammalva, Massimiliano Del Bene, Arianna Barbotti, Francesco DiMeco, Timothy Richard West, Brian Vala Nahed, Roberto Romero, Ignacio Arrese, Roberto Hornero, Rosario Sarabia
{"title":"基于深度学习的二维术中超声图像胶质瘤分割:使用脑肿瘤术中超声数据库(BraTioUS)的多中心研究。","authors":"Santiago Cepeda, Olga Esteban-Sinovas, Vikas Singh, Prakash Shetty, Aliasgar Moiyadi, Luke Dixon, Alistair Weld, Giulio Anichini, Stamatia Giannarou, Sophie Camp, Ilyess Zemmoura, Giuseppe Roberto Giammalva, Massimiliano Del Bene, Arianna Barbotti, Francesco DiMeco, Timothy Richard West, Brian Vala Nahed, Roberto Romero, Ignacio Arrese, Roberto Hornero, Rosario Sarabia","doi":"10.3390/cancers17020315","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Intraoperative ultrasound (ioUS) provides real-time imaging during neurosurgical procedures, with advantages such as portability and cost-effectiveness. Accurate tumor segmentation has the potential to substantially enhance the interpretability of ioUS images; however, its implementation is limited by persistent challenges, including noise, artifacts, and anatomical variability. This study aims to develop a convolutional neural network (CNN) model for glioma segmentation in ioUS images via a multicenter dataset. <b>Methods:</b> We retrospectively collected data from the BraTioUS and ReMIND datasets, including histologically confirmed gliomas with high-quality B-mode images. For each patient, the tumor was manually segmented on the 2D slice with its largest diameter. A CNN was trained using the nnU-Net framework. The dataset was stratified by center and divided into training (70%) and testing (30%) subsets, with external validation performed on two independent cohorts: the RESECT-SEG database and the Imperial College NHS Trust London cohort. Performance was evaluated using metrics such as the Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and 95th percentile Hausdorff distance (HD95). <b>Results:</b> The training cohort consisted of 197 subjects, 56 of whom were in the hold-out testing set and 53 in the external validation cohort. In the hold-out testing set, the model achieved a median DSC of 0.90, ASSD of 8.51, and HD95 of 29.08. On external validation, the model achieved a DSC of 0.65, ASSD of 14.14, and HD95 of 44.02 on the RESECT-SEG database and a DSC of 0.93, ASSD of 8.58, and HD95 of 28.81 on the Imperial-NHS cohort. <b>Conclusions:</b> This study supports the feasibility of CNN-based glioma segmentation in ioUS across multiple centers. Future work should enhance segmentation detail and explore real-time clinical implementation, potentially expanding ioUS's role in neurosurgical resection.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Glioma Segmentation of 2D Intraoperative Ultrasound Images: A Multicenter Study Using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS).\",\"authors\":\"Santiago Cepeda, Olga Esteban-Sinovas, Vikas Singh, Prakash Shetty, Aliasgar Moiyadi, Luke Dixon, Alistair Weld, Giulio Anichini, Stamatia Giannarou, Sophie Camp, Ilyess Zemmoura, Giuseppe Roberto Giammalva, Massimiliano Del Bene, Arianna Barbotti, Francesco DiMeco, Timothy Richard West, Brian Vala Nahed, Roberto Romero, Ignacio Arrese, Roberto Hornero, Rosario Sarabia\",\"doi\":\"10.3390/cancers17020315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Intraoperative ultrasound (ioUS) provides real-time imaging during neurosurgical procedures, with advantages such as portability and cost-effectiveness. Accurate tumor segmentation has the potential to substantially enhance the interpretability of ioUS images; however, its implementation is limited by persistent challenges, including noise, artifacts, and anatomical variability. This study aims to develop a convolutional neural network (CNN) model for glioma segmentation in ioUS images via a multicenter dataset. <b>Methods:</b> We retrospectively collected data from the BraTioUS and ReMIND datasets, including histologically confirmed gliomas with high-quality B-mode images. For each patient, the tumor was manually segmented on the 2D slice with its largest diameter. A CNN was trained using the nnU-Net framework. The dataset was stratified by center and divided into training (70%) and testing (30%) subsets, with external validation performed on two independent cohorts: the RESECT-SEG database and the Imperial College NHS Trust London cohort. Performance was evaluated using metrics such as the Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and 95th percentile Hausdorff distance (HD95). <b>Results:</b> The training cohort consisted of 197 subjects, 56 of whom were in the hold-out testing set and 53 in the external validation cohort. In the hold-out testing set, the model achieved a median DSC of 0.90, ASSD of 8.51, and HD95 of 29.08. On external validation, the model achieved a DSC of 0.65, ASSD of 14.14, and HD95 of 44.02 on the RESECT-SEG database and a DSC of 0.93, ASSD of 8.58, and HD95 of 28.81 on the Imperial-NHS cohort. <b>Conclusions:</b> This study supports the feasibility of CNN-based glioma segmentation in ioUS across multiple centers. Future work should enhance segmentation detail and explore real-time clinical implementation, potentially expanding ioUS's role in neurosurgical resection.</p>\",\"PeriodicalId\":9681,\"journal\":{\"name\":\"Cancers\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/cancers17020315\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17020315","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Deep Learning-Based Glioma Segmentation of 2D Intraoperative Ultrasound Images: A Multicenter Study Using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS).
Background: Intraoperative ultrasound (ioUS) provides real-time imaging during neurosurgical procedures, with advantages such as portability and cost-effectiveness. Accurate tumor segmentation has the potential to substantially enhance the interpretability of ioUS images; however, its implementation is limited by persistent challenges, including noise, artifacts, and anatomical variability. This study aims to develop a convolutional neural network (CNN) model for glioma segmentation in ioUS images via a multicenter dataset. Methods: We retrospectively collected data from the BraTioUS and ReMIND datasets, including histologically confirmed gliomas with high-quality B-mode images. For each patient, the tumor was manually segmented on the 2D slice with its largest diameter. A CNN was trained using the nnU-Net framework. The dataset was stratified by center and divided into training (70%) and testing (30%) subsets, with external validation performed on two independent cohorts: the RESECT-SEG database and the Imperial College NHS Trust London cohort. Performance was evaluated using metrics such as the Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and 95th percentile Hausdorff distance (HD95). Results: The training cohort consisted of 197 subjects, 56 of whom were in the hold-out testing set and 53 in the external validation cohort. In the hold-out testing set, the model achieved a median DSC of 0.90, ASSD of 8.51, and HD95 of 29.08. On external validation, the model achieved a DSC of 0.65, ASSD of 14.14, and HD95 of 44.02 on the RESECT-SEG database and a DSC of 0.93, ASSD of 8.58, and HD95 of 28.81 on the Imperial-NHS cohort. Conclusions: This study supports the feasibility of CNN-based glioma segmentation in ioUS across multiple centers. Future work should enhance segmentation detail and explore real-time clinical implementation, potentially expanding ioUS's role in neurosurgical resection.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.