{"title":"心肌能量代谢紊乱在糖尿病心肌病中的作用:从新型蛋白质翻译后修饰的角度。","authors":"Dongze Li, Li Zhang, Qiming Gong, Huilan Deng, Changfang Luo, Tingting Zhou, Wei Huang, Yong Xu","doi":"10.1186/s13148-025-01814-2","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes. This review examines the epigenetic pathogenesis of DbCM, primarily focusing on myocardial energy metabolism perturbations and novel PTMs associated with them. It provides a detailed analysis of the mechanisms of these novel PTMs in DbCM to enhance the understanding of DbCM pathophysiology and establish a theoretical foundation for the development of new treatment strategies for DbCM.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"17 1","pages":"15"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765930/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of myocardial energy metabolism perturbations in diabetic cardiomyopathy: from the perspective of novel protein post-translational modifications.\",\"authors\":\"Dongze Li, Li Zhang, Qiming Gong, Huilan Deng, Changfang Luo, Tingting Zhou, Wei Huang, Yong Xu\",\"doi\":\"10.1186/s13148-025-01814-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes. This review examines the epigenetic pathogenesis of DbCM, primarily focusing on myocardial energy metabolism perturbations and novel PTMs associated with them. It provides a detailed analysis of the mechanisms of these novel PTMs in DbCM to enhance the understanding of DbCM pathophysiology and establish a theoretical foundation for the development of new treatment strategies for DbCM.</p>\",\"PeriodicalId\":10366,\"journal\":{\"name\":\"Clinical Epigenetics\",\"volume\":\"17 1\",\"pages\":\"15\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epigenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13148-025-01814-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-025-01814-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The role of myocardial energy metabolism perturbations in diabetic cardiomyopathy: from the perspective of novel protein post-translational modifications.
Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes. This review examines the epigenetic pathogenesis of DbCM, primarily focusing on myocardial energy metabolism perturbations and novel PTMs associated with them. It provides a detailed analysis of the mechanisms of these novel PTMs in DbCM to enhance the understanding of DbCM pathophysiology and establish a theoretical foundation for the development of new treatment strategies for DbCM.
期刊介绍:
Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.