将沉浸式伽马音乐作为一种工具,在改善宇航员精神状态的同时提高他们的血糖清除率。

IF 2.9 3区 生物学 Q2 ASTRONOMY & ASTROPHYSICS Life Sciences in Space Research Pub Date : 2025-02-01 DOI:10.1016/j.lssr.2024.10.011
Peter Wostyn , Piet Goddaer
{"title":"将沉浸式伽马音乐作为一种工具,在改善宇航员精神状态的同时提高他们的血糖清除率。","authors":"Peter Wostyn ,&nbsp;Piet Goddaer","doi":"10.1016/j.lssr.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>Spaceflight occurs under extreme environmental conditions that pose significant risks to the physical and mental health and well-being of astronauts. Certain factors, such as prolonged isolation, monotony, disrupted circadian rhythms, heavy workload, and weightlessness in space, can trigger psychological distress and may contribute to a variety of mental health problems, including mood and anxiety disturbances. Recent findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, demonstrating enlargement of the brain's perivascular spaces from preflight to postflight, at least suggest reduced glymphatic clearance in microgravity, and have raised concerns about long-term cognitive health in astronauts. Therefore, it is critical for future long-duration human exploration missions to identify, develop and validate all potentially effective long-term countermeasures capable of reducing the risk of perivascular space enlargement and impaired glymphatic transport in space mission crews. Furthermore, it is crucial to implement effective strategies that would allow crew members to maintain optimal psychological well-being during future long-duration space exploration. In the present paper, we propose “immersive gamma music” as an add-on countermeasure that in combination with existing countermeasures can optimize glymphatic clearance in astronauts while improving their mental well-being. If confirmed, this approach could enrich the practice of space medicine, and might become increasingly important, given the plans for future human missions, including a return to the Moon and manned missions to Mars.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 86-89"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immersive gamma music as a tool for enhancing glymphatic clearance in astronauts while improving their mental well-being\",\"authors\":\"Peter Wostyn ,&nbsp;Piet Goddaer\",\"doi\":\"10.1016/j.lssr.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spaceflight occurs under extreme environmental conditions that pose significant risks to the physical and mental health and well-being of astronauts. Certain factors, such as prolonged isolation, monotony, disrupted circadian rhythms, heavy workload, and weightlessness in space, can trigger psychological distress and may contribute to a variety of mental health problems, including mood and anxiety disturbances. Recent findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, demonstrating enlargement of the brain's perivascular spaces from preflight to postflight, at least suggest reduced glymphatic clearance in microgravity, and have raised concerns about long-term cognitive health in astronauts. Therefore, it is critical for future long-duration human exploration missions to identify, develop and validate all potentially effective long-term countermeasures capable of reducing the risk of perivascular space enlargement and impaired glymphatic transport in space mission crews. Furthermore, it is crucial to implement effective strategies that would allow crew members to maintain optimal psychological well-being during future long-duration space exploration. In the present paper, we propose “immersive gamma music” as an add-on countermeasure that in combination with existing countermeasures can optimize glymphatic clearance in astronauts while improving their mental well-being. If confirmed, this approach could enrich the practice of space medicine, and might become increasingly important, given the plans for future human missions, including a return to the Moon and manned missions to Mars.</div></div>\",\"PeriodicalId\":18029,\"journal\":{\"name\":\"Life Sciences in Space Research\",\"volume\":\"44 \",\"pages\":\"Pages 86-89\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Sciences in Space Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214552424001007\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552424001007","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immersive gamma music as a tool for enhancing glymphatic clearance in astronauts while improving their mental well-being
Spaceflight occurs under extreme environmental conditions that pose significant risks to the physical and mental health and well-being of astronauts. Certain factors, such as prolonged isolation, monotony, disrupted circadian rhythms, heavy workload, and weightlessness in space, can trigger psychological distress and may contribute to a variety of mental health problems, including mood and anxiety disturbances. Recent findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, demonstrating enlargement of the brain's perivascular spaces from preflight to postflight, at least suggest reduced glymphatic clearance in microgravity, and have raised concerns about long-term cognitive health in astronauts. Therefore, it is critical for future long-duration human exploration missions to identify, develop and validate all potentially effective long-term countermeasures capable of reducing the risk of perivascular space enlargement and impaired glymphatic transport in space mission crews. Furthermore, it is crucial to implement effective strategies that would allow crew members to maintain optimal psychological well-being during future long-duration space exploration. In the present paper, we propose “immersive gamma music” as an add-on countermeasure that in combination with existing countermeasures can optimize glymphatic clearance in astronauts while improving their mental well-being. If confirmed, this approach could enrich the practice of space medicine, and might become increasingly important, given the plans for future human missions, including a return to the Moon and manned missions to Mars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life Sciences in Space Research
Life Sciences in Space Research Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
5.30
自引率
8.00%
发文量
69
期刊介绍: Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research. Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.
期刊最新文献
IFC - Editorial Board Biofilm dynamics in space and their potential for sustainable space exploration – A comprehensive review Solid waste management and resource recovery during the 4-crew 180-day CELSS integrated experiment Combined irradiation by gamma-rays and carbon-12 nuclei caused hyperlocomotion and change in striatal metabolism of rats Anthocyanin can improve the survival of rice seeds from solar light outside the international space station
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1