Dhruvin H Patel, Elina Karimullina, Yirui Guo, Cameron Semper, Deepak T Patel, Tabitha Emde, Dominika Borek, Alexei Savchenko
{"title":"Cryo-EM SPR structures of Salmonella typhimurium ArnC; the key enzyme in lipid-A modification conferring polymyxin resistance.","authors":"Dhruvin H Patel, Elina Karimullina, Yirui Guo, Cameron Semper, Deepak T Patel, Tabitha Emde, Dominika Borek, Alexei Savchenko","doi":"10.1002/pro.70037","DOIUrl":null,"url":null,"abstract":"<p><p>Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective. Here, we report the cryo-EM SPR structures of glycosyltransferase ArnC from Salmonella typhimurium determined in apo and UDP-bound forms at resolutions 2.75 Å and 3.8 Å, respectively. The structure of the ArnC protomer comprises three distinct regions: an N-terminal glycosyltransferase domain, transmembrane region, and the interface helices (IHs). ArnC forms a tetramer with C2 symmetry, where the C-terminal strand inserts into the adjacent protomer. This tetrameric state is further stabilized by two distinct interfaces formed by ArnC that form a network of hydrogen bonds and salt bridges. The binding of UDP induces conformational changes that stabilize the loop between residues H201 to S213, and part of the putative catalytic pocket formed by IH1 and IH2. The surface property analysis revealed a hydrophobic cavity formed by TM1 and TM2 in the apo state, which is disrupted upon UDP binding. The comparison of ArnC structures to their homologs GtrB and DPMS suggests the key residues involved in ArnC catalytic activity.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 2","pages":"e70037"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cryo-EM SPR structures of Salmonella typhimurium ArnC; the key enzyme in lipid-A modification conferring polymyxin resistance.
Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective. Here, we report the cryo-EM SPR structures of glycosyltransferase ArnC from Salmonella typhimurium determined in apo and UDP-bound forms at resolutions 2.75 Å and 3.8 Å, respectively. The structure of the ArnC protomer comprises three distinct regions: an N-terminal glycosyltransferase domain, transmembrane region, and the interface helices (IHs). ArnC forms a tetramer with C2 symmetry, where the C-terminal strand inserts into the adjacent protomer. This tetrameric state is further stabilized by two distinct interfaces formed by ArnC that form a network of hydrogen bonds and salt bridges. The binding of UDP induces conformational changes that stabilize the loop between residues H201 to S213, and part of the putative catalytic pocket formed by IH1 and IH2. The surface property analysis revealed a hydrophobic cavity formed by TM1 and TM2 in the apo state, which is disrupted upon UDP binding. The comparison of ArnC structures to their homologs GtrB and DPMS suggests the key residues involved in ArnC catalytic activity.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).