Olga Dubljević , Željko Pavković , Maja Srbovan , Milica Potrebić , Miloš Stanojlović , Vesna Pešić
{"title":"Attention-deficit/hyperactivity disorder-related psychomotor activity and altered neuronal activity in the medial prefrontal cortex and striatum in the A53T mouse model of Parkinson's disease and other synucleinopathies: Findings from an “endophenotype” approach","authors":"Olga Dubljević , Željko Pavković , Maja Srbovan , Milica Potrebić , Miloš Stanojlović , Vesna Pešić","doi":"10.1016/j.pnpbp.2025.111273","DOIUrl":null,"url":null,"abstract":"<div><div>Attention-Deficit/Hyperactivity Disorder (ADHD) is associated with an increased risk of Parkinson's disease (PD) and other synucleinopathies later in life. The severity of the ADHD phenotype may play a significant role in this association. There is no indication that any of the existing animal models can unify these disorders. Using the Open Field Test, amphetamine-challenge test, Western blot and immunohistochemical analysis of neuronal activity markers (c-Fos, FosB and ΔFosB) we performed a deliberate neurobehavioral characterization of 6-month-old hemizygous A53T carriers (A53T+) of the JAX006823 strain, evaluating the utility of this transgenic mouse model of PD and other synucleinopathies in ADHD/PD continuum research. Adhering to the “endophenotype” approach, non-transgenic littermates (A53T-) and C57BL/6J mice (used to maintain the colony) were examined with A53T+ mice, to differentiate between biomarkers of transgenicity and endophenotypic traits related to the genetic background of the strain. Obtained results revealed that increased behavioral and acute striatal response to novelty, increased basal neuronal activity of the ventromedial prefrontal cortex and rate-dependent calming effect of amphetamine were endophenotypic characteristics of the strain. Increased acute response of the medial prefrontal cortex to novelty and chronic increase in neuronal activity of the striatum appeared as the mark of transgenicity. To the best of our knowledge, this is the first study to indicate external validity of a transgenic mouse model of PD and other synucleinopathies with the neurobehavioral pathology associated with ADHD, hinting at its potential in preclinical research of ADHD/PD continuum. The full capacity of the model remains to be explored.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"137 ","pages":"Article 111273"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584625000272","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Attention-deficit/hyperactivity disorder-related psychomotor activity and altered neuronal activity in the medial prefrontal cortex and striatum in the A53T mouse model of Parkinson's disease and other synucleinopathies: Findings from an “endophenotype” approach
Attention-Deficit/Hyperactivity Disorder (ADHD) is associated with an increased risk of Parkinson's disease (PD) and other synucleinopathies later in life. The severity of the ADHD phenotype may play a significant role in this association. There is no indication that any of the existing animal models can unify these disorders. Using the Open Field Test, amphetamine-challenge test, Western blot and immunohistochemical analysis of neuronal activity markers (c-Fos, FosB and ΔFosB) we performed a deliberate neurobehavioral characterization of 6-month-old hemizygous A53T carriers (A53T+) of the JAX006823 strain, evaluating the utility of this transgenic mouse model of PD and other synucleinopathies in ADHD/PD continuum research. Adhering to the “endophenotype” approach, non-transgenic littermates (A53T-) and C57BL/6J mice (used to maintain the colony) were examined with A53T+ mice, to differentiate between biomarkers of transgenicity and endophenotypic traits related to the genetic background of the strain. Obtained results revealed that increased behavioral and acute striatal response to novelty, increased basal neuronal activity of the ventromedial prefrontal cortex and rate-dependent calming effect of amphetamine were endophenotypic characteristics of the strain. Increased acute response of the medial prefrontal cortex to novelty and chronic increase in neuronal activity of the striatum appeared as the mark of transgenicity. To the best of our knowledge, this is the first study to indicate external validity of a transgenic mouse model of PD and other synucleinopathies with the neurobehavioral pathology associated with ADHD, hinting at its potential in preclinical research of ADHD/PD continuum. The full capacity of the model remains to be explored.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.