具有低热膨胀和增强介电性能的氟化聚酰亚胺的设计和合成。

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-05-01 Epub Date: 2025-01-23 DOI:10.1016/j.jcis.2025.01.197
Yang Li, Zhong-Wen Pu, Zhi-Zhou Yang, Yi-Da Wang, Yu-Tang Shen, Jing-Bo Wu, Lingliang Long, Yin-Ning Zhou, Wei-Cheng Yan
{"title":"具有低热膨胀和增强介电性能的氟化聚酰亚胺的设计和合成。","authors":"Yang Li, Zhong-Wen Pu, Zhi-Zhou Yang, Yi-Da Wang, Yu-Tang Shen, Jing-Bo Wu, Lingliang Long, Yin-Ning Zhou, Wei-Cheng Yan","doi":"10.1016/j.jcis.2025.01.197","DOIUrl":null,"url":null,"abstract":"<p><p>Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH<sub>2</sub>) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs). Due to the unique conformational transition of the eight-membered carbon ring, the resulting PI can reach a low averaging thermal expansion coefficient (CTE) of only 12.27 ppm/K over 5-150 ℃ with a size change rate of only 0.16 %. Surprisingly, the synergistic effect of DBCOD-NH<sub>2</sub> with the other two monomers enhances the dielectric performance of the PIs. At an electric field frequency of 10 MHz, the dielectric constant (D<sub>k</sub>) and the dielectric loss (D<sub>f</sub>) can be reduced to as low as 2.61 and 0.00194, respectively. The strategy used herein largely tackles the challenge of balancing low D<sub>k</sub> with low CTE. Furthermore, these PI films also exhibit good thermal stability (with 5 wt% weight loss temperatures ranging from 453 to 537 ℃ in N<sub>2</sub>, and glass transition temperatures of 305-337 ℃) and robust mechanical properties (with a tensile modulus of 1.88-2.29 GPa and an elongation at break of 6.36-8.11 %). The combination of low thermal expansion and excellent dielectric properties renders these PIs highly promising for applications in the microelectronics and telecommunications industries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"938-947"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and synthesis of fluorinated polyimides with low thermal expansion and enhanced dielectric properties.\",\"authors\":\"Yang Li, Zhong-Wen Pu, Zhi-Zhou Yang, Yi-Da Wang, Yu-Tang Shen, Jing-Bo Wu, Lingliang Long, Yin-Ning Zhou, Wei-Cheng Yan\",\"doi\":\"10.1016/j.jcis.2025.01.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH<sub>2</sub>) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs). Due to the unique conformational transition of the eight-membered carbon ring, the resulting PI can reach a low averaging thermal expansion coefficient (CTE) of only 12.27 ppm/K over 5-150 ℃ with a size change rate of only 0.16 %. Surprisingly, the synergistic effect of DBCOD-NH<sub>2</sub> with the other two monomers enhances the dielectric performance of the PIs. At an electric field frequency of 10 MHz, the dielectric constant (D<sub>k</sub>) and the dielectric loss (D<sub>f</sub>) can be reduced to as low as 2.61 and 0.00194, respectively. The strategy used herein largely tackles the challenge of balancing low D<sub>k</sub> with low CTE. Furthermore, these PI films also exhibit good thermal stability (with 5 wt% weight loss temperatures ranging from 453 to 537 ℃ in N<sub>2</sub>, and glass transition temperatures of 305-337 ℃) and robust mechanical properties (with a tensile modulus of 1.88-2.29 GPa and an elongation at break of 6.36-8.11 %). The combination of low thermal expansion and excellent dielectric properties renders these PIs highly promising for applications in the microelectronics and telecommunications industries.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"685 \",\"pages\":\"938-947\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.01.197\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.197","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

现代微电子工业迫切需要具有低热膨胀系数、低介电常数和最小介电损耗的介电材料。然而,低介电常数和低热膨胀材料的设计原则是矛盾的。本研究设计并合成了一种含二苯并环二烯单元(DBCOD-NH2)的新型二胺单体,并与高氟含量的4,4′-六氟异丙偏二苯二酸酐和4,4′-二氨基-2,2′-双(三氟甲基)联苯进行聚合,得到了一系列含氟聚酰亚胺(pi)。由于八元碳环独特的构象转变,得到的PI在5-150℃范围内平均热膨胀系数(CTE)仅为12.27 ppm/K,尺寸变化率仅为0.16%。令人惊讶的是,DBCOD-NH2与其他两种单体的协同作用提高了pi的介电性能。在电场频率为10 MHz时,介质常数Dk和介质损耗Df分别可降至2.61和0.00194。本文使用的策略在很大程度上解决了平衡低Dk和低CTE的挑战。此外,这些PI薄膜还表现出良好的热稳定性(在453 ~ 537℃的氮气中失重5 wt%,玻璃化转变温度为305 ~ 337℃)和坚固的机械性能(拉伸模量为1.88 ~ 2.29 GPa,断裂伸长率为6.36 ~ 8.11%)。低热膨胀和优异介电性能的结合使得这些pi在微电子和电信行业的应用非常有前途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and synthesis of fluorinated polyimides with low thermal expansion and enhanced dielectric properties.

Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH2) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs). Due to the unique conformational transition of the eight-membered carbon ring, the resulting PI can reach a low averaging thermal expansion coefficient (CTE) of only 12.27 ppm/K over 5-150 ℃ with a size change rate of only 0.16 %. Surprisingly, the synergistic effect of DBCOD-NH2 with the other two monomers enhances the dielectric performance of the PIs. At an electric field frequency of 10 MHz, the dielectric constant (Dk) and the dielectric loss (Df) can be reduced to as low as 2.61 and 0.00194, respectively. The strategy used herein largely tackles the challenge of balancing low Dk with low CTE. Furthermore, these PI films also exhibit good thermal stability (with 5 wt% weight loss temperatures ranging from 453 to 537 ℃ in N2, and glass transition temperatures of 305-337 ℃) and robust mechanical properties (with a tensile modulus of 1.88-2.29 GPa and an elongation at break of 6.36-8.11 %). The combination of low thermal expansion and excellent dielectric properties renders these PIs highly promising for applications in the microelectronics and telecommunications industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1