有限应变热电力学中物理增强神经网络的广义理论

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2025-01-27 DOI:10.1016/j.cma.2025.117741
R. Ortigosa , J. Martínez-Frutos , A. Pérez-Escolar , I. Castañar , N. Ellmer , A.J. Gil
{"title":"有限应变热电力学中物理增强神经网络的广义理论","authors":"R. Ortigosa ,&nbsp;J. Martínez-Frutos ,&nbsp;A. Pérez-Escolar ,&nbsp;I. Castañar ,&nbsp;N. Ellmer ,&nbsp;A.J. Gil","doi":"10.1016/j.cma.2025.117741","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript introduces a novel neural network-based computational framework for constitutive modeling of thermo-electro-mechanically coupled materials at finite strains, with four key innovations: (i) It supports calibration of neural network models with various input forms, such as <span><math><mrow><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>Υ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, or <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span>, with <span><math><mi>F</mi></math></span> representing the deformation gradient tensor, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> the electric field and electric displacement field, respectively and finally, <span><math><mi>θ</mi></math></span> and <span><math><mi>η</mi></math></span>, the temperature and entropy fields. These models comply with physical laws and material symmetries by utilizing isotropic or anisotropic invariants corresponding to the material’s symmetry group. (ii) A calibration approach is developed for the case of experimental data, where entropy <span><math><mi>η</mi></math></span> is typically unmeasurable. (iii) The framework accommodates models like <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, specially convenient for the imposition of polyconvexity across the three physics involved. A detailed calibration study is conducted evaluating various neural network architectures and considering a large variety of ground truth thermo-electro-mechanical constitutive models. The results demonstrate excellent predictive performance on larger datasets, validated through complex finite element simulations using both ground truth and neural network-based models. Crucially, the framework can be straightforwardly extended to scenarios involving other physics.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"437 ","pages":"Article 117741"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized theory for physics-augmented neural networks in finite strain thermo-electro-mechanics\",\"authors\":\"R. Ortigosa ,&nbsp;J. Martínez-Frutos ,&nbsp;A. Pérez-Escolar ,&nbsp;I. Castañar ,&nbsp;N. Ellmer ,&nbsp;A.J. Gil\",\"doi\":\"10.1016/j.cma.2025.117741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript introduces a novel neural network-based computational framework for constitutive modeling of thermo-electro-mechanically coupled materials at finite strains, with four key innovations: (i) It supports calibration of neural network models with various input forms, such as <span><math><mrow><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>Υ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, or <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span>, with <span><math><mi>F</mi></math></span> representing the deformation gradient tensor, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> the electric field and electric displacement field, respectively and finally, <span><math><mi>θ</mi></math></span> and <span><math><mi>η</mi></math></span>, the temperature and entropy fields. These models comply with physical laws and material symmetries by utilizing isotropic or anisotropic invariants corresponding to the material’s symmetry group. (ii) A calibration approach is developed for the case of experimental data, where entropy <span><math><mi>η</mi></math></span> is typically unmeasurable. (iii) The framework accommodates models like <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, specially convenient for the imposition of polyconvexity across the three physics involved. A detailed calibration study is conducted evaluating various neural network architectures and considering a large variety of ground truth thermo-electro-mechanical constitutive models. The results demonstrate excellent predictive performance on larger datasets, validated through complex finite element simulations using both ground truth and neural network-based models. Crucially, the framework can be straightforwardly extended to scenarios involving other physics.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"437 \",\"pages\":\"Article 117741\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525000131\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525000131","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的基于神经网络的计算框架,用于有限应变下热-电-机械耦合材料的本构建模,其中有四个关键创新:(1)支持Ψnn(F,E0,θ)、enn(F,D0,η)、Υnn(F,E0,η)、Γnn(F,D0,θ)等多种输入形式的神经网络模型的标定,其中F代表变形梯度张量,E0和D0分别代表电场和电位移场,θ和η分别代表温度场和熵场。这些模型通过利用与材料对称群相对应的各向同性或各向异性不变量来遵守物理定律和材料对称性。(ii)针对熵η通常无法测量的实验数据,开发了一种校准方法。(iii)该框架可容纳像enn(F,D0,η)这样的模型,特别便于在涉及的三种物理中施加多凸性。进行了详细的校准研究,评估了各种神经网络架构,并考虑了各种各样的地真热机电本构模型。结果在大型数据集上展示了出色的预测性能,并通过使用基础事实和基于神经网络的模型的复杂有限元模拟进行了验证。至关重要的是,该框架可以直接扩展到涉及其他物理的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A generalized theory for physics-augmented neural networks in finite strain thermo-electro-mechanics
This manuscript introduces a novel neural network-based computational framework for constitutive modeling of thermo-electro-mechanically coupled materials at finite strains, with four key innovations: (i) It supports calibration of neural network models with various input forms, such as Ψnn(F,E0,θ), enn(F,D0,η), Υnn(F,E0,η), or Γnn(F,D0,θ), with F representing the deformation gradient tensor, E0 and D0 the electric field and electric displacement field, respectively and finally, θ and η, the temperature and entropy fields. These models comply with physical laws and material symmetries by utilizing isotropic or anisotropic invariants corresponding to the material’s symmetry group. (ii) A calibration approach is developed for the case of experimental data, where entropy η is typically unmeasurable. (iii) The framework accommodates models like enn(F,D0,η), specially convenient for the imposition of polyconvexity across the three physics involved. A detailed calibration study is conducted evaluating various neural network architectures and considering a large variety of ground truth thermo-electro-mechanical constitutive models. The results demonstrate excellent predictive performance on larger datasets, validated through complex finite element simulations using both ground truth and neural network-based models. Crucially, the framework can be straightforwardly extended to scenarios involving other physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Level set topology optimization for fluid-structure interaction using the modified immersed finite element method Corrosion-fatigue degradation in reinforced concrete structures: A multiphysics phase-field modeling approach Speeding up an unsteady flow simulation by adaptive BDDC and Krylov subspace recycling A smoothly varying quadrature approach for 3D IgA-BEM discretizations: Application to Stokes flow simulations Surrogate-enhanced higher order eigenstrain-based reduced order homogenization for polycrystal plasticity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1