R. Ortigosa , J. Martínez-Frutos , A. Pérez-Escolar , I. Castañar , N. Ellmer , A.J. Gil
{"title":"有限应变热电力学中物理增强神经网络的广义理论","authors":"R. Ortigosa , J. Martínez-Frutos , A. Pérez-Escolar , I. Castañar , N. Ellmer , A.J. Gil","doi":"10.1016/j.cma.2025.117741","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript introduces a novel neural network-based computational framework for constitutive modeling of thermo-electro-mechanically coupled materials at finite strains, with four key innovations: (i) It supports calibration of neural network models with various input forms, such as <span><math><mrow><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>Υ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, or <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span>, with <span><math><mi>F</mi></math></span> representing the deformation gradient tensor, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> the electric field and electric displacement field, respectively and finally, <span><math><mi>θ</mi></math></span> and <span><math><mi>η</mi></math></span>, the temperature and entropy fields. These models comply with physical laws and material symmetries by utilizing isotropic or anisotropic invariants corresponding to the material’s symmetry group. (ii) A calibration approach is developed for the case of experimental data, where entropy <span><math><mi>η</mi></math></span> is typically unmeasurable. (iii) The framework accommodates models like <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, specially convenient for the imposition of polyconvexity across the three physics involved. A detailed calibration study is conducted evaluating various neural network architectures and considering a large variety of ground truth thermo-electro-mechanical constitutive models. The results demonstrate excellent predictive performance on larger datasets, validated through complex finite element simulations using both ground truth and neural network-based models. Crucially, the framework can be straightforwardly extended to scenarios involving other physics.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"437 ","pages":"Article 117741"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized theory for physics-augmented neural networks in finite strain thermo-electro-mechanics\",\"authors\":\"R. Ortigosa , J. Martínez-Frutos , A. Pérez-Escolar , I. Castañar , N. Ellmer , A.J. Gil\",\"doi\":\"10.1016/j.cma.2025.117741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript introduces a novel neural network-based computational framework for constitutive modeling of thermo-electro-mechanically coupled materials at finite strains, with four key innovations: (i) It supports calibration of neural network models with various input forms, such as <span><math><mrow><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>Υ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, or <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span>, with <span><math><mi>F</mi></math></span> representing the deformation gradient tensor, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> the electric field and electric displacement field, respectively and finally, <span><math><mi>θ</mi></math></span> and <span><math><mi>η</mi></math></span>, the temperature and entropy fields. These models comply with physical laws and material symmetries by utilizing isotropic or anisotropic invariants corresponding to the material’s symmetry group. (ii) A calibration approach is developed for the case of experimental data, where entropy <span><math><mi>η</mi></math></span> is typically unmeasurable. (iii) The framework accommodates models like <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>, specially convenient for the imposition of polyconvexity across the three physics involved. A detailed calibration study is conducted evaluating various neural network architectures and considering a large variety of ground truth thermo-electro-mechanical constitutive models. The results demonstrate excellent predictive performance on larger datasets, validated through complex finite element simulations using both ground truth and neural network-based models. Crucially, the framework can be straightforwardly extended to scenarios involving other physics.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"437 \",\"pages\":\"Article 117741\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525000131\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525000131","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A generalized theory for physics-augmented neural networks in finite strain thermo-electro-mechanics
This manuscript introduces a novel neural network-based computational framework for constitutive modeling of thermo-electro-mechanically coupled materials at finite strains, with four key innovations: (i) It supports calibration of neural network models with various input forms, such as , , , or , with representing the deformation gradient tensor, and the electric field and electric displacement field, respectively and finally, and , the temperature and entropy fields. These models comply with physical laws and material symmetries by utilizing isotropic or anisotropic invariants corresponding to the material’s symmetry group. (ii) A calibration approach is developed for the case of experimental data, where entropy is typically unmeasurable. (iii) The framework accommodates models like , specially convenient for the imposition of polyconvexity across the three physics involved. A detailed calibration study is conducted evaluating various neural network architectures and considering a large variety of ground truth thermo-electro-mechanical constitutive models. The results demonstrate excellent predictive performance on larger datasets, validated through complex finite element simulations using both ground truth and neural network-based models. Crucially, the framework can be straightforwardly extended to scenarios involving other physics.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.