用于植入式医疗器械的羧甲基纤维素钠/多巴胺生物纤维素涂层具有更高的湿稳定性。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-02-03 DOI:10.1021/acsabm.4c01278
Yehao Jiang, Zainab Ayaz, Long Xiang, Lili Zhou, Leila Mamizadeh, Yong Wang, Xie Dong, Nan Huang, Yongxiang Leng, Behnam Akhavan, Fengjuan Jing
{"title":"用于植入式医疗器械的羧甲基纤维素钠/多巴胺生物纤维素涂层具有更高的湿稳定性。","authors":"Yehao Jiang, Zainab Ayaz, Long Xiang, Lili Zhou, Leila Mamizadeh, Yong Wang, Xie Dong, Nan Huang, Yongxiang Leng, Behnam Akhavan, Fengjuan Jing","doi":"10.1021/acsabm.4c01278","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium carboxymethylcellulose (CMC) is a biocompatible and biodegradable derivative of cellulose, making it a promising material for biomedical applications. However, its poor stability in aqueous environments has significantly limited its use in long-term biomedical devices. Here, we present for the first time a simple and controllable method to enhance the wet stability of CMC coatings by cross-linking of CMC and polydopamine (PDA) and self-polymerization of PDA for widespread applications in biomedical devices. A series of CMC/PDA coatings were fabricated on the initial PDA layers by using dip coating and subsequently heated at 200 °C. The performance of the CMC/PDA coatings and their chemical and structural stability in aqueous media have been systematically analyzed, and the mechanisms underpinning their robust performance have been revealed. FITR, X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC) results showed that CMC/PDA coatings involved amidation and esterification reactions as well as self-polymerization of PDA. Degradation studies in phosphate-buffered saline (PBS) solution at 37 °C indicated degradation via ester and amide bond cleavage, with the stability of CMC/PDA coatings surpassing that of individual PDA and CMC coatings over a 30-day immersion period. The CMC/PDA coating with a CMC concentration of 15 mg/mL exhibited the highest adhesion strength in an aqueous environment, which was attributed to the high cross-linking of CMC and PDA, as well as the intrinsic stability of PDA. The CMC/PDA coatings demonstrated favorable viability, growth, and proliferation of endothelial cells. The stable and biocompatible biocellulose coatings can be easily applied from aqueous solutions onto almost any type of solid metal and ceramic material, providing a promising dimension for surface engineering of vascular scaffolds and tissue engineering constructs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium Carboxymethylcellulose/Polydopamine Biocellulose Coatings with Enhanced Wet Stability for Implantable Medical Devices.\",\"authors\":\"Yehao Jiang, Zainab Ayaz, Long Xiang, Lili Zhou, Leila Mamizadeh, Yong Wang, Xie Dong, Nan Huang, Yongxiang Leng, Behnam Akhavan, Fengjuan Jing\",\"doi\":\"10.1021/acsabm.4c01278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium carboxymethylcellulose (CMC) is a biocompatible and biodegradable derivative of cellulose, making it a promising material for biomedical applications. However, its poor stability in aqueous environments has significantly limited its use in long-term biomedical devices. Here, we present for the first time a simple and controllable method to enhance the wet stability of CMC coatings by cross-linking of CMC and polydopamine (PDA) and self-polymerization of PDA for widespread applications in biomedical devices. A series of CMC/PDA coatings were fabricated on the initial PDA layers by using dip coating and subsequently heated at 200 °C. The performance of the CMC/PDA coatings and their chemical and structural stability in aqueous media have been systematically analyzed, and the mechanisms underpinning their robust performance have been revealed. FITR, X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC) results showed that CMC/PDA coatings involved amidation and esterification reactions as well as self-polymerization of PDA. Degradation studies in phosphate-buffered saline (PBS) solution at 37 °C indicated degradation via ester and amide bond cleavage, with the stability of CMC/PDA coatings surpassing that of individual PDA and CMC coatings over a 30-day immersion period. The CMC/PDA coating with a CMC concentration of 15 mg/mL exhibited the highest adhesion strength in an aqueous environment, which was attributed to the high cross-linking of CMC and PDA, as well as the intrinsic stability of PDA. The CMC/PDA coatings demonstrated favorable viability, growth, and proliferation of endothelial cells. The stable and biocompatible biocellulose coatings can be easily applied from aqueous solutions onto almost any type of solid metal and ceramic material, providing a promising dimension for surface engineering of vascular scaffolds and tissue engineering constructs.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

羧甲基纤维素钠(CMC)是一种具有生物相容性和可生物降解性的纤维素衍生物,是一种很有前景的生物医学应用材料。然而,由于其在水环境中的稳定性较差,大大限制了其在长期生物医学设备中的应用。在此,我们首次提出了一种简单可控的方法,通过 CMC 与聚多巴胺(PDA)的交联以及 PDA 的自聚合来增强 CMC 涂层的湿稳定性,从而在生物医学设备中得到广泛应用。通过浸涂法在初始 PDA 层上制作了一系列 CMC/PDA 涂层,随后在 200 °C 下加热。对 CMC/PDA 涂层的性能及其在水介质中的化学和结构稳定性进行了系统分析,并揭示了其强大性能的机理。FITR、X 射线光电子能谱(XPS)和凝胶渗透色谱(GPC)结果表明,CMC/PDA 涂层涉及酰胺化和酯化反应以及 PDA 的自聚合反应。在 37 °C 磷酸盐缓冲盐水(PBS)溶液中进行的降解研究表明,降解是通过酯键和酰胺键裂解实现的,在 30 天的浸泡期内,CMC/PDA 涂层的稳定性超过了单独的 PDA 和 CMC 涂层。CMC 浓度为 15 mg/mL 的 CMC/PDA 涂层在水环境中表现出最高的附着力,这归功于 CMC 和 PDA 的高度交联以及 PDA 的内在稳定性。CMC/PDA 涂层显示出良好的内皮细胞活力、生长和增殖能力。这种稳定且具有生物相容性的生物纤维素涂层可以很容易地从水溶液中涂覆到几乎所有类型的固体金属和陶瓷材料上,为血管支架和组织工程构建物的表面工程提供了一个前景广阔的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sodium Carboxymethylcellulose/Polydopamine Biocellulose Coatings with Enhanced Wet Stability for Implantable Medical Devices.

Sodium carboxymethylcellulose (CMC) is a biocompatible and biodegradable derivative of cellulose, making it a promising material for biomedical applications. However, its poor stability in aqueous environments has significantly limited its use in long-term biomedical devices. Here, we present for the first time a simple and controllable method to enhance the wet stability of CMC coatings by cross-linking of CMC and polydopamine (PDA) and self-polymerization of PDA for widespread applications in biomedical devices. A series of CMC/PDA coatings were fabricated on the initial PDA layers by using dip coating and subsequently heated at 200 °C. The performance of the CMC/PDA coatings and their chemical and structural stability in aqueous media have been systematically analyzed, and the mechanisms underpinning their robust performance have been revealed. FITR, X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC) results showed that CMC/PDA coatings involved amidation and esterification reactions as well as self-polymerization of PDA. Degradation studies in phosphate-buffered saline (PBS) solution at 37 °C indicated degradation via ester and amide bond cleavage, with the stability of CMC/PDA coatings surpassing that of individual PDA and CMC coatings over a 30-day immersion period. The CMC/PDA coating with a CMC concentration of 15 mg/mL exhibited the highest adhesion strength in an aqueous environment, which was attributed to the high cross-linking of CMC and PDA, as well as the intrinsic stability of PDA. The CMC/PDA coatings demonstrated favorable viability, growth, and proliferation of endothelial cells. The stable and biocompatible biocellulose coatings can be easily applied from aqueous solutions onto almost any type of solid metal and ceramic material, providing a promising dimension for surface engineering of vascular scaffolds and tissue engineering constructs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Correction to "Effect of Chirality and Amphiphilicity on the Antimicrobial Activity of Tripodal Lysine-Based Peptides". Harnessing the Efficiency of Twin Boron Nitride and Graphene Monolayers for Anticancer Drug Delivery: Insights from DFT. Construction of Nonenzymatic Flexible Electrochemical Sensor for Glucose Using Bimetallic Copper Ferrite/Sulfur-Doped Graphene Oxide Water-Based Conductive Ink by Noninvasive Method. Nanoparticle-Reinforced Hydrogel with a Well-Defined Pore Structure for Sustainable Drug Release and Effective Wound Healing. A Rhodamine-Based Ratiometric Fluorescent Sensor for Dual-Channel Visible and Near-Infrared Emission Detection of NAD(P)H in Living Cells and Fruit Fly Larvae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1