贝美替尼增强乳腺癌细胞对雌激素受体抑制剂的敏感性

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biochemistry & Cell Biology Pub Date : 2025-02-01 DOI:10.1016/j.biocel.2025.106750
Gyeongmi Kim , Se Hee Ahn , Se-Kyeong Jang , Selim Kim , Hyunggee Kim , Ki Soo Park , Hyeon-Ok Jin , Chan Sub Park , Min-Ki Seong , Hyun-Ah Kim , In-Chul Park
{"title":"贝美替尼增强乳腺癌细胞对雌激素受体抑制剂的敏感性","authors":"Gyeongmi Kim ,&nbsp;Se Hee Ahn ,&nbsp;Se-Kyeong Jang ,&nbsp;Selim Kim ,&nbsp;Hyunggee Kim ,&nbsp;Ki Soo Park ,&nbsp;Hyeon-Ok Jin ,&nbsp;Chan Sub Park ,&nbsp;Min-Ki Seong ,&nbsp;Hyun-Ah Kim ,&nbsp;In-Chul Park","doi":"10.1016/j.biocel.2025.106750","DOIUrl":null,"url":null,"abstract":"<div><div>Estrogen receptor (ER)-positive breast cancer accounts for a substantial proportion of breast cancer cases and is typically managed using ER inhibitors, such as tamoxifen and fulvestrant. However, the development of resistance to these therapies is a significant clinical challenge, and the improvement of therapeutic strategies is crucial. This study aimed to investigate the potential of bemcentinib, a well-known AXL inhibitor, to enhance the sensitivity of MCF7 breast cancer cells to 4-hydroxytamoxifen (4-OHT) and fulvestrant. Our findings revealed that bemcentinib effectively decreased S6K1 phosphorylation and synergistically induced cell death when used in combination with ER inhibitors. Bemcentinib treatment also unexpectedly activated STAT3, and inhibition of STAT3 enhanced cell death induced by bemcentinib and 4-OHT. Notably, the combination of bemcentinib and 4-OHT effectively induced cell death even in tamoxifen-resistant MCF7 cells (MCF7-TR), highlighting its potential to overcome tamoxifen resistance. Interestingly, AXL knockdown did not enhance the sensitivity to 4-OHT or affect S6K1 signaling in either MCF7 or MCF7-TR cells, suggesting that the sensitizing effect of bemcentinib through S6K1 inhibition may be independent of AXL expression. Our findings suggest that bemcentinib treatment, particularly in combination therapy, could be a promising strategy for improving treatment efficacy and overcoming tamoxifen resistance in ER-positive breast cancer.</div></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"180 ","pages":"Article 106750"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bemcentinib enhances sensitivity to estrogen receptor inhibitors in breast cancer cells\",\"authors\":\"Gyeongmi Kim ,&nbsp;Se Hee Ahn ,&nbsp;Se-Kyeong Jang ,&nbsp;Selim Kim ,&nbsp;Hyunggee Kim ,&nbsp;Ki Soo Park ,&nbsp;Hyeon-Ok Jin ,&nbsp;Chan Sub Park ,&nbsp;Min-Ki Seong ,&nbsp;Hyun-Ah Kim ,&nbsp;In-Chul Park\",\"doi\":\"10.1016/j.biocel.2025.106750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Estrogen receptor (ER)-positive breast cancer accounts for a substantial proportion of breast cancer cases and is typically managed using ER inhibitors, such as tamoxifen and fulvestrant. However, the development of resistance to these therapies is a significant clinical challenge, and the improvement of therapeutic strategies is crucial. This study aimed to investigate the potential of bemcentinib, a well-known AXL inhibitor, to enhance the sensitivity of MCF7 breast cancer cells to 4-hydroxytamoxifen (4-OHT) and fulvestrant. Our findings revealed that bemcentinib effectively decreased S6K1 phosphorylation and synergistically induced cell death when used in combination with ER inhibitors. Bemcentinib treatment also unexpectedly activated STAT3, and inhibition of STAT3 enhanced cell death induced by bemcentinib and 4-OHT. Notably, the combination of bemcentinib and 4-OHT effectively induced cell death even in tamoxifen-resistant MCF7 cells (MCF7-TR), highlighting its potential to overcome tamoxifen resistance. Interestingly, AXL knockdown did not enhance the sensitivity to 4-OHT or affect S6K1 signaling in either MCF7 or MCF7-TR cells, suggesting that the sensitizing effect of bemcentinib through S6K1 inhibition may be independent of AXL expression. Our findings suggest that bemcentinib treatment, particularly in combination therapy, could be a promising strategy for improving treatment efficacy and overcoming tamoxifen resistance in ER-positive breast cancer.</div></div>\",\"PeriodicalId\":50335,\"journal\":{\"name\":\"International Journal of Biochemistry & Cell Biology\",\"volume\":\"180 \",\"pages\":\"Article 106750\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biochemistry & Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1357272525000172\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272525000172","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bemcentinib enhances sensitivity to estrogen receptor inhibitors in breast cancer cells
Estrogen receptor (ER)-positive breast cancer accounts for a substantial proportion of breast cancer cases and is typically managed using ER inhibitors, such as tamoxifen and fulvestrant. However, the development of resistance to these therapies is a significant clinical challenge, and the improvement of therapeutic strategies is crucial. This study aimed to investigate the potential of bemcentinib, a well-known AXL inhibitor, to enhance the sensitivity of MCF7 breast cancer cells to 4-hydroxytamoxifen (4-OHT) and fulvestrant. Our findings revealed that bemcentinib effectively decreased S6K1 phosphorylation and synergistically induced cell death when used in combination with ER inhibitors. Bemcentinib treatment also unexpectedly activated STAT3, and inhibition of STAT3 enhanced cell death induced by bemcentinib and 4-OHT. Notably, the combination of bemcentinib and 4-OHT effectively induced cell death even in tamoxifen-resistant MCF7 cells (MCF7-TR), highlighting its potential to overcome tamoxifen resistance. Interestingly, AXL knockdown did not enhance the sensitivity to 4-OHT or affect S6K1 signaling in either MCF7 or MCF7-TR cells, suggesting that the sensitizing effect of bemcentinib through S6K1 inhibition may be independent of AXL expression. Our findings suggest that bemcentinib treatment, particularly in combination therapy, could be a promising strategy for improving treatment efficacy and overcoming tamoxifen resistance in ER-positive breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
124
审稿时长
19 days
期刊介绍: IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research. Topics of interest include, but are not limited to: -Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism -Novel insights into disease pathogenesis -Nanotechnology with implication to biological and medical processes -Genomics and bioinformatics
期刊最新文献
Identification of a liver fibrosis and disease progression-related transcriptome signature in non-alcoholic fatty liver disease Editorial Board 5'tiRNA-33-CysACA-1 promotes septic cardiomyopathy by targeting PGC-1α-mediated mitochondrial biogenesis Prevention of fenitrothion induced hepatic toxicity by saponarin via modulating TLR4/MYD88, JAK1/STAT3 and NF-κB signaling pathways Corrigendum to “Dimerization of ZIP promotes its transcriptional repressive function and biological activity” [Int. J. Biochem. Cell Biol. 44 (2012) 886–895]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1