IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Mechanics of Materials Pub Date : 2024-12-25 DOI:10.1016/j.mechmat.2024.105232
Zhaozhen Huang, Caroline Antion, Franck Toussaint
{"title":"Identification for elastoplastic constitutive parameters of 316L stainless steel lattice structures using finite element model updating and integrated digital image correlation","authors":"Zhaozhen Huang,&nbsp;Caroline Antion,&nbsp;Franck Toussaint","doi":"10.1016/j.mechmat.2024.105232","DOIUrl":null,"url":null,"abstract":"<div><div>Lattice structures are widely considered for industrial applications owing to their excellent energy absorption and mechanical properties. In this work, octet-truss lattice structures are manufactured from 316L stainless steel powder by selective laser melting (SLM). The geometrical information of lattice structures is captured by SEM and X-ray tomography. It reveals that realistic dimensions of struts differ slightly from CAD-designed ones. The mechanical behaviors are investigated both experimentally and numerically. Quasi-static uni-axial compression experiments with 2D digital image correlation (DIC) technology are conducted to measure displacement/strain fields. Finite element analysis based on an elastic and anisotropic plastic constitutive model is used to simulate mechanical behaviors. To improve the predictive accuracy, a finite element model updating approach is implemented to identify constitutive parameters. The results show that numerical simulation with optimized parameters match well with experiments in aspect of force-displacement curve at elastic–plastic stage and displacement fields.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"202 ","pages":"Article 105232"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624003247","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶格结构因其出色的能量吸收和机械性能而被广泛应用于工业领域。在这项工作中,利用选择性激光熔化(SLM)技术,用 316L 不锈钢粉末制造出了八叉桁架晶格结构。通过扫描电子显微镜和 X 射线断层扫描捕捉了晶格结构的几何信息。结果表明,支柱的实际尺寸与 CAD 设计的尺寸略有不同。实验和数值研究了机械行为。利用二维数字图像相关(DIC)技术进行了准静态单轴压缩实验,以测量位移/应变场。基于弹性和各向异性塑性组成模型的有限元分析用于模拟机械行为。为了提高预测精度,采用了一种有限元模型更新方法来确定构成参数。结果表明,在弹塑性阶段的力-位移曲线和位移场方面,采用优化参数的数值模拟与实验结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification for elastoplastic constitutive parameters of 316L stainless steel lattice structures using finite element model updating and integrated digital image correlation
Lattice structures are widely considered for industrial applications owing to their excellent energy absorption and mechanical properties. In this work, octet-truss lattice structures are manufactured from 316L stainless steel powder by selective laser melting (SLM). The geometrical information of lattice structures is captured by SEM and X-ray tomography. It reveals that realistic dimensions of struts differ slightly from CAD-designed ones. The mechanical behaviors are investigated both experimentally and numerically. Quasi-static uni-axial compression experiments with 2D digital image correlation (DIC) technology are conducted to measure displacement/strain fields. Finite element analysis based on an elastic and anisotropic plastic constitutive model is used to simulate mechanical behaviors. To improve the predictive accuracy, a finite element model updating approach is implemented to identify constitutive parameters. The results show that numerical simulation with optimized parameters match well with experiments in aspect of force-displacement curve at elastic–plastic stage and displacement fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
期刊最新文献
Editorial Board Mechanism and prediction of screw dislocation strengthening by interstitials in advanced high-strength steels: Application to Fe–C and Fe–N alloys Shear bands in polymer tubes under internal pressure Batch active learning for microstructure–property relations in energetic materials Predictions of temperature-dependent material properties and auxeticity of graphene platelets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1