基于 YOLOv8-MRF 的自然环境中小麦分蘖检测研究

IF 6.3 Q1 AGRICULTURAL ENGINEERING Smart agricultural technology Pub Date : 2024-12-15 DOI:10.1016/j.atech.2024.100720
Min Liang , Yuchen Zhang , Jian Zhou , Fengcheng Shi , Zhiqiang Wang , Yu Lin , Liang Zhang , Yaxi Liu
{"title":"基于 YOLOv8-MRF 的自然环境中小麦分蘖检测研究","authors":"Min Liang ,&nbsp;Yuchen Zhang ,&nbsp;Jian Zhou ,&nbsp;Fengcheng Shi ,&nbsp;Zhiqiang Wang ,&nbsp;Yu Lin ,&nbsp;Liang Zhang ,&nbsp;Yaxi Liu","doi":"10.1016/j.atech.2024.100720","DOIUrl":null,"url":null,"abstract":"<div><div>To bolster agricultural efficiency and precision, this study introduces the YOLOv8-MRF model (multi-path coordinate attention, receptive field attention convolution, and Focaler-CIoU-optimized YOLOv8), a groundbreaking advancement in automated detection of wheat tillers. This model transcends traditional manual methods prone to subjectivity and inefficiency. This approach integrates an enhanced multi-path coordinate attention (MPCA) mechanism within the backbone network, capturing multi-scale features and significantly elevating tillers recognition. The innovative replacement of the CSPDarknet53 to 2-Stage FPN (C2F) module with receptive field attention convolution (RFCAConv) addresses parameter-sharing limitations, accentuating feature significance, and amplifying network performance. Coupled with the Focaler-CIoU loss for superior detection accuracy, YOLOv8-MRF outperforms RTDETR, YOLOv5, YOLOv7, and YOLOv8 by impressive margins in mAP50, while operating with merely 11 % of the parameters of YOLOv7, achieving a detection precision of 91.7 %, and with enhancements of 2.5 % in precision, 5.5 % in recall, and 4.1 % in mAP50 over the original model. The experimental results demonstrate that this method can realize tillering detection under complex backgrounds, contributing to advancing intelligent farming practices for wheat. Importantly, the YOLOv8-MRF model not only achieves significant technological advancements but also shows strong potential in practical applications, providing an effective tool for agricultural automation and intelligence, which could become pivotal in the development of future precision agriculture technologies.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100720"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on detection of wheat tillers in natural environment based on YOLOv8-MRF\",\"authors\":\"Min Liang ,&nbsp;Yuchen Zhang ,&nbsp;Jian Zhou ,&nbsp;Fengcheng Shi ,&nbsp;Zhiqiang Wang ,&nbsp;Yu Lin ,&nbsp;Liang Zhang ,&nbsp;Yaxi Liu\",\"doi\":\"10.1016/j.atech.2024.100720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To bolster agricultural efficiency and precision, this study introduces the YOLOv8-MRF model (multi-path coordinate attention, receptive field attention convolution, and Focaler-CIoU-optimized YOLOv8), a groundbreaking advancement in automated detection of wheat tillers. This model transcends traditional manual methods prone to subjectivity and inefficiency. This approach integrates an enhanced multi-path coordinate attention (MPCA) mechanism within the backbone network, capturing multi-scale features and significantly elevating tillers recognition. The innovative replacement of the CSPDarknet53 to 2-Stage FPN (C2F) module with receptive field attention convolution (RFCAConv) addresses parameter-sharing limitations, accentuating feature significance, and amplifying network performance. Coupled with the Focaler-CIoU loss for superior detection accuracy, YOLOv8-MRF outperforms RTDETR, YOLOv5, YOLOv7, and YOLOv8 by impressive margins in mAP50, while operating with merely 11 % of the parameters of YOLOv7, achieving a detection precision of 91.7 %, and with enhancements of 2.5 % in precision, 5.5 % in recall, and 4.1 % in mAP50 over the original model. The experimental results demonstrate that this method can realize tillering detection under complex backgrounds, contributing to advancing intelligent farming practices for wheat. Importantly, the YOLOv8-MRF model not only achieves significant technological advancements but also shows strong potential in practical applications, providing an effective tool for agricultural automation and intelligence, which could become pivotal in the development of future precision agriculture technologies.</div></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":\"10 \",\"pages\":\"Article 100720\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375524003241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524003241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on detection of wheat tillers in natural environment based on YOLOv8-MRF
To bolster agricultural efficiency and precision, this study introduces the YOLOv8-MRF model (multi-path coordinate attention, receptive field attention convolution, and Focaler-CIoU-optimized YOLOv8), a groundbreaking advancement in automated detection of wheat tillers. This model transcends traditional manual methods prone to subjectivity and inefficiency. This approach integrates an enhanced multi-path coordinate attention (MPCA) mechanism within the backbone network, capturing multi-scale features and significantly elevating tillers recognition. The innovative replacement of the CSPDarknet53 to 2-Stage FPN (C2F) module with receptive field attention convolution (RFCAConv) addresses parameter-sharing limitations, accentuating feature significance, and amplifying network performance. Coupled with the Focaler-CIoU loss for superior detection accuracy, YOLOv8-MRF outperforms RTDETR, YOLOv5, YOLOv7, and YOLOv8 by impressive margins in mAP50, while operating with merely 11 % of the parameters of YOLOv7, achieving a detection precision of 91.7 %, and with enhancements of 2.5 % in precision, 5.5 % in recall, and 4.1 % in mAP50 over the original model. The experimental results demonstrate that this method can realize tillering detection under complex backgrounds, contributing to advancing intelligent farming practices for wheat. Importantly, the YOLOv8-MRF model not only achieves significant technological advancements but also shows strong potential in practical applications, providing an effective tool for agricultural automation and intelligence, which could become pivotal in the development of future precision agriculture technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
YSD-BPTrack: A multi-object tracking framework for calves in occluded environments Validation of the FERTI-drip model for the evaluation and simulation of fertigation events in drip irrigation Spectral bands vs. vegetation indices: An AutoML approach for processing tomato yield predictions based on Sentinel-2 imagery Factors influencing learning attitude of farmers regarding adoption of farming technologies in farms of Kentucky, USA Precision agriculture for iceberg lettuce: From spatial sensing to per plant decision making and control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1