Flávio Tonioli Mariotto;Néstor Becerra Yoma;Madson Cortes de Almeida
{"title":"从噪声重复 GPS 数据中获取准确轨迹的无监督竞争学习聚类和视觉方法","authors":"Flávio Tonioli Mariotto;Néstor Becerra Yoma;Madson Cortes de Almeida","doi":"10.1109/TITS.2024.3520393","DOIUrl":null,"url":null,"abstract":"To make the proper planning of bus public transportation systems, especially with the introduction of electric buses to the fleets, it is essential to characterize the routes, patterns of traffic, speed, constraints, and presence of high slopes. Currently, GPS (Global Position System) is available worldwide in the fleet. However, they often produce datasets of poor quality, with low data rates, loss of information, noisy samples, and eventual paths not belonging to regular bus routes. Therefore, extracting useful information from these poor data is a challenging task. The current paper proposes a novel method based on an unsupervised competitive density clustering algorithm to obtain hot spot clusters of any density. The clusters are a result of their competition for the GPS samples. Each cluster attracts GPS samples until a maximum radius from its centroid and thereafter moves toward the most density areas. The winning clusters are sorted using a novel distance metric with the support of a visual interface, forming a sequence of points that outline the bus trajectory. Finally, indicators are correlated to the clusters making a trajectory characterization and allowing extensive assessments. According to the actual case studies, the method performs well with noisy GPS samples and the loss of information. The proposed method presents quite a fixed parameter, allowing fair performance for most GPS datasets without needing custom adjustments. It also proposes a framework for preparing the input GPS dataset, clustering, sorting the clusters to outline the trajectory, and making the trajectory characterization.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 2","pages":"1562-1572"},"PeriodicalIF":7.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Competitive Learning Clustering and Visual Method to Obtain Accurate Trajectories From Noisy Repetitive GPS Data\",\"authors\":\"Flávio Tonioli Mariotto;Néstor Becerra Yoma;Madson Cortes de Almeida\",\"doi\":\"10.1109/TITS.2024.3520393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To make the proper planning of bus public transportation systems, especially with the introduction of electric buses to the fleets, it is essential to characterize the routes, patterns of traffic, speed, constraints, and presence of high slopes. Currently, GPS (Global Position System) is available worldwide in the fleet. However, they often produce datasets of poor quality, with low data rates, loss of information, noisy samples, and eventual paths not belonging to regular bus routes. Therefore, extracting useful information from these poor data is a challenging task. The current paper proposes a novel method based on an unsupervised competitive density clustering algorithm to obtain hot spot clusters of any density. The clusters are a result of their competition for the GPS samples. Each cluster attracts GPS samples until a maximum radius from its centroid and thereafter moves toward the most density areas. The winning clusters are sorted using a novel distance metric with the support of a visual interface, forming a sequence of points that outline the bus trajectory. Finally, indicators are correlated to the clusters making a trajectory characterization and allowing extensive assessments. According to the actual case studies, the method performs well with noisy GPS samples and the loss of information. The proposed method presents quite a fixed parameter, allowing fair performance for most GPS datasets without needing custom adjustments. It also proposes a framework for preparing the input GPS dataset, clustering, sorting the clusters to outline the trajectory, and making the trajectory characterization.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"26 2\",\"pages\":\"1562-1572\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819199/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819199/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Unsupervised Competitive Learning Clustering and Visual Method to Obtain Accurate Trajectories From Noisy Repetitive GPS Data
To make the proper planning of bus public transportation systems, especially with the introduction of electric buses to the fleets, it is essential to characterize the routes, patterns of traffic, speed, constraints, and presence of high slopes. Currently, GPS (Global Position System) is available worldwide in the fleet. However, they often produce datasets of poor quality, with low data rates, loss of information, noisy samples, and eventual paths not belonging to regular bus routes. Therefore, extracting useful information from these poor data is a challenging task. The current paper proposes a novel method based on an unsupervised competitive density clustering algorithm to obtain hot spot clusters of any density. The clusters are a result of their competition for the GPS samples. Each cluster attracts GPS samples until a maximum radius from its centroid and thereafter moves toward the most density areas. The winning clusters are sorted using a novel distance metric with the support of a visual interface, forming a sequence of points that outline the bus trajectory. Finally, indicators are correlated to the clusters making a trajectory characterization and allowing extensive assessments. According to the actual case studies, the method performs well with noisy GPS samples and the loss of information. The proposed method presents quite a fixed parameter, allowing fair performance for most GPS datasets without needing custom adjustments. It also proposes a framework for preparing the input GPS dataset, clustering, sorting the clusters to outline the trajectory, and making the trajectory characterization.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.