Hyeonseo Park, Tejal V Patil, Jieun Lee, Hojin Kim, Seong-Jun Cho, Ki-Taek Lim
{"title":"NIR-activated catechol-functionalized nanodiamond nanofibers for accelerating on-demand MRSA and E. coli biofilm eradication.","authors":"Hyeonseo Park, Tejal V Patil, Jieun Lee, Hojin Kim, Seong-Jun Cho, Ki-Taek Lim","doi":"10.1186/s13036-024-00469-6","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of antibiotic resistance has made bacterial infections a persistent global health issue. In particular, extracellular polymeric substances (EPS) secreted by bacteria limit the effectiveness of conventional antibiotics, making biofilm removal challenging. To address this, we created ND@PDA nanoparticles by coating the surface of nanodiamonds (ND) with polydopamine (PDA). These nanoparticles were then integrated into polyvinyl alcohol to fabricate PVA/ND@PDA nanofiber scaffolds, resulting in an innovative platform with enhanced photothermal, antibacterial and antibiofilm properties. Upon exposure to near-infrared (NIR) light, the scaffolds exhibited a significant photothermal activity, oxidative stress and effectively damaging key bacterial components, such as biofilm, bacterial membranes, and proteins. Additionally, the catechol groups in PDA provided strong cell adhesion and high biocompatibility on the nanofiber surface. Our research proposes a platform that not only effectively addresses antibiotic-resistant infections but also contributes to advancements in wound healing therapies by enabling controlled antibacterial action with minimal toxicity.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"2"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00469-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
NIR-activated catechol-functionalized nanodiamond nanofibers for accelerating on-demand MRSA and E. coli biofilm eradication.
The rise of antibiotic resistance has made bacterial infections a persistent global health issue. In particular, extracellular polymeric substances (EPS) secreted by bacteria limit the effectiveness of conventional antibiotics, making biofilm removal challenging. To address this, we created ND@PDA nanoparticles by coating the surface of nanodiamonds (ND) with polydopamine (PDA). These nanoparticles were then integrated into polyvinyl alcohol to fabricate PVA/ND@PDA nanofiber scaffolds, resulting in an innovative platform with enhanced photothermal, antibacterial and antibiofilm properties. Upon exposure to near-infrared (NIR) light, the scaffolds exhibited a significant photothermal activity, oxidative stress and effectively damaging key bacterial components, such as biofilm, bacterial membranes, and proteins. Additionally, the catechol groups in PDA provided strong cell adhesion and high biocompatibility on the nanofiber surface. Our research proposes a platform that not only effectively addresses antibiotic-resistant infections but also contributes to advancements in wound healing therapies by enabling controlled antibacterial action with minimal toxicity.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.