IF 3.3 2区 医学 Q2 ONCOLOGY Radiation Oncology Pub Date : 2025-02-04 DOI:10.1186/s13014-025-02590-2
Paritt Wongtrakool, Chanon Puttanawarut, Pimolpun Changkaew, Supakiet Piasanthia, Pareena Earwong, Nauljun Stansook, Suphalak Khachonkham
{"title":"Synthetic CT generation from CBCT and MRI using StarGAN in the Pelvic Region.","authors":"Paritt Wongtrakool, Chanon Puttanawarut, Pimolpun Changkaew, Supakiet Piasanthia, Pareena Earwong, Nauljun Stansook, Suphalak Khachonkham","doi":"10.1186/s13014-025-02590-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>This study evaluated StarGAN, a deep learning model designed to generate synthetic computed tomography (sCT) images from magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) data using a single model. The goal was to provide accurate Hounsfield unit (HU) data for dose calculation to enable MRI simulation and adaptive radiation therapy (ART) using CBCT or MRI. We also compared the performance and benefits of StarGAN to the commonly used CycleGAN.</p><p><strong>Materials and methods: </strong>StarGAN and CycleGAN were employed in this study. The dataset comprised 53 cases of pelvic cancer. Evaluation involved qualitative and quantitative analyses, focusing on synthetic image quality and dose distribution calculation.</p><p><strong>Results: </strong>For sCT generated from CBCT, StarGAN demonstrated superior anatomical preservation based on qualitative evaluation. Quantitatively, CycleGAN exhibited a lower mean absolute error (MAE) for the body (42.8 ± 4.3 HU) and bone (138.2 ± 20.3), whereas StarGAN produced a higher MAE for the body (50.8 ± 5.2 HU) and bone (153.4 ± 27.7 HU). Dosimetric evaluation showed a mean dose difference (DD) within 2% for the planning target volume (PTV) and body, with a gamma passing rate (GPR) > 90% under the 2%/2 mm criteria. For sCT generated from MRI, qualitative evaluation also favored the anatomical preservation provided by StarGAN. CycleGAN recorded a lower MAE (79.8 ± 14 HU for the body and 253.6 ± 30.9 HU for bone) compared with StarGAN (94.7 ± 7.4 HU for the body and 353.6 ± 34.9 HU for bone). Both models achieved a mean DD within 2% in the PTV and body, and GPR > 90%.</p><p><strong>Conclusion: </strong>While CycleGAN exhibited superior quantitative metrics, StarGAN was better in anatomical preservation, highlighting its potential for sCT generation in radiotherapy.</p>","PeriodicalId":49639,"journal":{"name":"Radiation Oncology","volume":"20 1","pages":"18"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13014-025-02590-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

理由和目标:本研究评估了 StarGAN,这是一种深度学习模型,旨在使用单一模型从磁共振成像(MRI)和锥束计算机断层扫描(CBCT)数据生成合成计算机断层扫描(sCT)图像。我们的目标是为剂量计算提供准确的 Hounsfield 单位 (HU) 数据,以便使用 CBCT 或 MRI 进行 MRI 模拟和自适应放射治疗 (ART)。我们还比较了 StarGAN 和常用的 CycleGAN 的性能和优势:本研究采用了 StarGAN 和 CycleGAN。数据集包括 53 例盆腔癌症病例。评估包括定性和定量分析,重点是合成图像质量和剂量分布计算:结果:对于从 CBCT 生成的 sCT,根据定性评估,StarGAN 显示出更优越的解剖学保留。在定量分析方面,CycleGAN 对身体(42.8 ± 4.3 HU)和骨骼(138.2 ± 20.3)的平均绝对误差(MAE)较低,而 StarGAN 对身体(50.8 ± 5.2 HU)和骨骼(153.4 ± 27.7 HU)的平均绝对误差较高。剂量学评估显示,规划靶体积(PTV)和身体的平均剂量差(DD)在 2% 以内,伽马通过率(GPR)在 2%/2 mm 标准下大于 90%。对于由核磁共振成像生成的 sCT,定性评估也倾向于 StarGAN 所提供的解剖保存。与 StarGAN(身体为 94.7 ± 7.4 HU,骨骼为 353.6 ± 34.9 HU)相比,CycleGAN 的 MAE 更低(身体为 79.8 ± 14 HU,骨骼为 253.6 ± 30.9 HU)。两种模型在 PTV 和体部的平均 DD 均在 2% 以内,GPR 均大于 90%:结论:CycleGAN 显示出更优越的定量指标,而 StarGAN 则在解剖保存方面更胜一筹,突显了其在放疗中生成 sCT 的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthetic CT generation from CBCT and MRI using StarGAN in the Pelvic Region.

Rationale and objectives: This study evaluated StarGAN, a deep learning model designed to generate synthetic computed tomography (sCT) images from magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) data using a single model. The goal was to provide accurate Hounsfield unit (HU) data for dose calculation to enable MRI simulation and adaptive radiation therapy (ART) using CBCT or MRI. We also compared the performance and benefits of StarGAN to the commonly used CycleGAN.

Materials and methods: StarGAN and CycleGAN were employed in this study. The dataset comprised 53 cases of pelvic cancer. Evaluation involved qualitative and quantitative analyses, focusing on synthetic image quality and dose distribution calculation.

Results: For sCT generated from CBCT, StarGAN demonstrated superior anatomical preservation based on qualitative evaluation. Quantitatively, CycleGAN exhibited a lower mean absolute error (MAE) for the body (42.8 ± 4.3 HU) and bone (138.2 ± 20.3), whereas StarGAN produced a higher MAE for the body (50.8 ± 5.2 HU) and bone (153.4 ± 27.7 HU). Dosimetric evaluation showed a mean dose difference (DD) within 2% for the planning target volume (PTV) and body, with a gamma passing rate (GPR) > 90% under the 2%/2 mm criteria. For sCT generated from MRI, qualitative evaluation also favored the anatomical preservation provided by StarGAN. CycleGAN recorded a lower MAE (79.8 ± 14 HU for the body and 253.6 ± 30.9 HU for bone) compared with StarGAN (94.7 ± 7.4 HU for the body and 353.6 ± 34.9 HU for bone). Both models achieved a mean DD within 2% in the PTV and body, and GPR > 90%.

Conclusion: While CycleGAN exhibited superior quantitative metrics, StarGAN was better in anatomical preservation, highlighting its potential for sCT generation in radiotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation Oncology
Radiation Oncology ONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
6.50
自引率
2.80%
发文量
181
审稿时长
3-6 weeks
期刊介绍: Radiation Oncology encompasses all aspects of research that impacts on the treatment of cancer using radiation. It publishes findings in molecular and cellular radiation biology, radiation physics, radiation technology, and clinical oncology.
期刊最新文献
Deformable registration for nasopharyngeal carcinoma using adaptive mask and weight allocation strategy based CycleFCNs model. Stereotactic body radiotherapy (SBRT) as a treatment for localized prostate cancer: a retrospective analysis. Therapeutic and prognostic impact of target volume delineation in postoperative radiotherapy for high-grade glioma patients with subventricular zone involvement. Stereotactic body radiotherapy with carbon ions as local ablative treatment in patients with primary liver cancer. Functional outcome after Brachytherapy with bi-nuclide (Ru-106/Iodine-125) plaques in large uveal melanomas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1