大鼠内脏卵黄囊内胚层致畸抗体体外内化:超微结构胶体金示踪研究。

C C Leung, C L Yan, B Cheewatrakoolpong
{"title":"大鼠内脏卵黄囊内胚层致畸抗体体外内化:超微结构胶体金示踪研究。","authors":"C C Leung,&nbsp;C L Yan,&nbsp;B Cheewatrakoolpong","doi":"10.1002/aja.1001830203","DOIUrl":null,"url":null,"abstract":"<p><p>Previous work from our laboratory has demonstrated that specific rabbit immunoglobulins G (IgG) against a glycoprotein antigen of rat kidney proximal tubule or a cross-reacting visceral yolk-sac endodermal cell antigen will induce abnormal embryonic development when they are injected into pregnant rats during the period of organogenesis. It has been proposed that these antibodies may induce embryopathy by interfering with functions of the visceral yolk-sac placenta, an important organ providing nutrients to the embryo at this stage of development. In order to gain some insight into the underlying pathogenic mechanism(s) in which specific teratogenic IgG may interfere with visceral yolk-sac functions, we examined the uptake of these teratogenic IgG by the visceral yolk-sac endodermal cells at the electron microscopic level. The results demonstrated that teratogenic rabbit IgG specifically localized on the fuzzy coat of the external apical cell membrane of the visceral yolk-sac endoderm at the intermicrovillous region. Within 5 min, the IgG were rapidly internalized via coated pits and micropinocytic vesicles. Within 30 min, an increasing proportion of gold particles appeared within uncoated vesicles or vacuoles of various sizes; most of the gold particles were in close proximity to the inner membranous lining of the vesicles. Similar findings were observed after 1- or 2-hr incubation. After 24- to 48-hr culture, however, the gold particles appeared to have dissociated from the inner surface of the vesicle membrane.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"183 2","pages":"125-9"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001830203","citationCount":"2","resultStr":"{\"title\":\"Teratogenic antibody internalization by rat visceral yolk-sac endoderm in vitro: an ultrastructural colloidal gold tracer study.\",\"authors\":\"C C Leung,&nbsp;C L Yan,&nbsp;B Cheewatrakoolpong\",\"doi\":\"10.1002/aja.1001830203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous work from our laboratory has demonstrated that specific rabbit immunoglobulins G (IgG) against a glycoprotein antigen of rat kidney proximal tubule or a cross-reacting visceral yolk-sac endodermal cell antigen will induce abnormal embryonic development when they are injected into pregnant rats during the period of organogenesis. It has been proposed that these antibodies may induce embryopathy by interfering with functions of the visceral yolk-sac placenta, an important organ providing nutrients to the embryo at this stage of development. In order to gain some insight into the underlying pathogenic mechanism(s) in which specific teratogenic IgG may interfere with visceral yolk-sac functions, we examined the uptake of these teratogenic IgG by the visceral yolk-sac endodermal cells at the electron microscopic level. The results demonstrated that teratogenic rabbit IgG specifically localized on the fuzzy coat of the external apical cell membrane of the visceral yolk-sac endoderm at the intermicrovillous region. Within 5 min, the IgG were rapidly internalized via coated pits and micropinocytic vesicles. Within 30 min, an increasing proportion of gold particles appeared within uncoated vesicles or vacuoles of various sizes; most of the gold particles were in close proximity to the inner membranous lining of the vesicles. Similar findings were observed after 1- or 2-hr incubation. After 24- to 48-hr culture, however, the gold particles appeared to have dissociated from the inner surface of the vesicle membrane.(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":50815,\"journal\":{\"name\":\"American Journal of Anatomy\",\"volume\":\"183 2\",\"pages\":\"125-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/aja.1001830203\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Anatomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aja.1001830203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Anatomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aja.1001830203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本实验室前期研究表明,将兔免疫球蛋白G (IgG)抗大鼠肾近端小管糖蛋白抗原或内脏卵黄囊内胚层细胞抗原的特异性免疫球蛋白G (IgG)注射到器官发生期妊娠大鼠体内,可诱导胚胎发育异常。有人提出,这些抗体可能通过干扰内脏卵黄囊胎盘的功能而诱发胚胎病,内脏卵黄囊胎盘是胚胎发育阶段提供营养的重要器官。为了深入了解特定致畸IgG干扰内脏卵黄囊功能的潜在致病机制,我们在电子显微镜下检查了内脏卵黄囊内胚层细胞对这些致畸IgG的摄取。结果表明,致畸兔IgG特异性定位于内脏卵黄囊内胚层外顶细胞膜的绒毛间区。在5分钟内,IgG通过包被凹坑和微胞泡迅速内化。30min内,不同大小的未包被囊泡或液泡中出现的金颗粒比例增加;大多数金颗粒靠近囊泡的内膜衬里。在1或2小时的孵育后观察到类似的结果。然而,经过24至48小时的培养,金颗粒似乎已经从囊泡膜的内表面分离。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Teratogenic antibody internalization by rat visceral yolk-sac endoderm in vitro: an ultrastructural colloidal gold tracer study.

Previous work from our laboratory has demonstrated that specific rabbit immunoglobulins G (IgG) against a glycoprotein antigen of rat kidney proximal tubule or a cross-reacting visceral yolk-sac endodermal cell antigen will induce abnormal embryonic development when they are injected into pregnant rats during the period of organogenesis. It has been proposed that these antibodies may induce embryopathy by interfering with functions of the visceral yolk-sac placenta, an important organ providing nutrients to the embryo at this stage of development. In order to gain some insight into the underlying pathogenic mechanism(s) in which specific teratogenic IgG may interfere with visceral yolk-sac functions, we examined the uptake of these teratogenic IgG by the visceral yolk-sac endodermal cells at the electron microscopic level. The results demonstrated that teratogenic rabbit IgG specifically localized on the fuzzy coat of the external apical cell membrane of the visceral yolk-sac endoderm at the intermicrovillous region. Within 5 min, the IgG were rapidly internalized via coated pits and micropinocytic vesicles. Within 30 min, an increasing proportion of gold particles appeared within uncoated vesicles or vacuoles of various sizes; most of the gold particles were in close proximity to the inner membranous lining of the vesicles. Similar findings were observed after 1- or 2-hr incubation. After 24- to 48-hr culture, however, the gold particles appeared to have dissociated from the inner surface of the vesicle membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Role of Foveal Cortex in Discriminating Peripheral Stimuli: The Sketchpad Hypothesis. Association of Lymphovascular Space Invasion With Locoregional Failure and Survival in Patients With Node-Negative Oral Tongue Cancers. Early Minocycline and Late FK506 Treatment Improves Survival and Alleviates Neuroinflammation, Neurodegeneration, and Behavioral Deficits in Prion-Infected Hamsters. Trimethylamine N-Oxide and Mortality Risk in Patients With Peripheral Artery Disease. Proliferation in the genital tract of the normal mature guinea pig treated with colchicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1