{"title":"Chiral Lead Halide Perovskites in Action: Unlocking Enantiomer Separation Puzzle","authors":"Pallavi Singh, Rudra Mukherjee, Anil Kumar","doi":"10.1002/bmc.6085","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Effective enantiomer separation is vital in many important sectors like pharmaceuticals, agrochemicals, food safety, and biomedical imaging, yet conventional methods are costly, slow, and chemical intensive. This has sparked interest in exploring novel materials like chiral lead halide perovskite nanocrystals to address these challenges. This newly emerging chiral material combines the superior properties of traditional halide perovskites with the unique attributes of chirality, resulting in distinct optoelectronic behaviors. This perspective provides a discussion on future research opportunities in the usage of these chiral LHP NCs for enantiomeric recognition and separation. LHPs exhibit extraordinary photophysical properties, easier surface functionalization, range of bonding interactions, and high surface area to volume ratio that can be used for detecting enantiomers. To the best of our knowledge, the use of chiral halide perovskites for the chiral discrimination of enantiomers has been scarcely reported, presenting a novel opportunity to explore their potential in enantiomeric recognition and separation.</p>\n </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.6085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Chiral Lead Halide Perovskites in Action: Unlocking Enantiomer Separation Puzzle
Effective enantiomer separation is vital in many important sectors like pharmaceuticals, agrochemicals, food safety, and biomedical imaging, yet conventional methods are costly, slow, and chemical intensive. This has sparked interest in exploring novel materials like chiral lead halide perovskite nanocrystals to address these challenges. This newly emerging chiral material combines the superior properties of traditional halide perovskites with the unique attributes of chirality, resulting in distinct optoelectronic behaviors. This perspective provides a discussion on future research opportunities in the usage of these chiral LHP NCs for enantiomeric recognition and separation. LHPs exhibit extraordinary photophysical properties, easier surface functionalization, range of bonding interactions, and high surface area to volume ratio that can be used for detecting enantiomers. To the best of our knowledge, the use of chiral halide perovskites for the chiral discrimination of enantiomers has been scarcely reported, presenting a novel opportunity to explore their potential in enantiomeric recognition and separation.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.