异步和干涉非线性光谱学(AI-NS):拓展时间和光谱视野。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-02-20 Epub Date: 2025-02-07 DOI:10.1021/acs.jpcb.4c08228
Gi Rim Han, Hyunmin Jang, Tai Hyun Yoon, Minhaeng Cho
{"title":"异步和干涉非线性光谱学(AI-NS):拓展时间和光谱视野。","authors":"Gi Rim Han, Hyunmin Jang, Tai Hyun Yoon, Minhaeng Cho","doi":"10.1021/acs.jpcb.4c08228","DOIUrl":null,"url":null,"abstract":"<p><p>Since the advent of time-resolved spectroscopy based on precision frequency technology of laser sources, it has been considered an alternative way to study dynamic processes in photochemical systems. This Perspective introduces asynchronous and interferometric nonlinear spectroscopy (AI-NS), a spectroscopic technique that combines asynchronously generated laser pulses and interferometric detection, offering an unprecedented temporal dynamic range with high spectral resolution and rapid data acquisition capabilities. By eliminating the need for mechanical delay stages, AI-NS facilitates the rapid collection of time-resolved data on dynamics ranging from femtoseconds to nanoseconds while simultaneously distinguishing frequency-dependent responses. Here, we detail the technical methodology of AI-NS and explore its applications to the studies of various systems, including semiconductors and biological systems. Additionally, we highlight prospective advancements, such as integration with multidimensional spectroscopy techniques. AI-NS not only expands the scope of spectroscopic analysis but also opens new avenues for the exploration of diverse materials and molecular systems.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"1891-1903"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asynchronous and Interferometric Nonlinear Spectroscopy (AI-NS): Expanding Temporal and Spectral Horizons.\",\"authors\":\"Gi Rim Han, Hyunmin Jang, Tai Hyun Yoon, Minhaeng Cho\",\"doi\":\"10.1021/acs.jpcb.4c08228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the advent of time-resolved spectroscopy based on precision frequency technology of laser sources, it has been considered an alternative way to study dynamic processes in photochemical systems. This Perspective introduces asynchronous and interferometric nonlinear spectroscopy (AI-NS), a spectroscopic technique that combines asynchronously generated laser pulses and interferometric detection, offering an unprecedented temporal dynamic range with high spectral resolution and rapid data acquisition capabilities. By eliminating the need for mechanical delay stages, AI-NS facilitates the rapid collection of time-resolved data on dynamics ranging from femtoseconds to nanoseconds while simultaneously distinguishing frequency-dependent responses. Here, we detail the technical methodology of AI-NS and explore its applications to the studies of various systems, including semiconductors and biological systems. Additionally, we highlight prospective advancements, such as integration with multidimensional spectroscopy techniques. AI-NS not only expands the scope of spectroscopic analysis but also opens new avenues for the exploration of diverse materials and molecular systems.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"1891-1903\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c08228\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08228","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asynchronous and Interferometric Nonlinear Spectroscopy (AI-NS): Expanding Temporal and Spectral Horizons.

Since the advent of time-resolved spectroscopy based on precision frequency technology of laser sources, it has been considered an alternative way to study dynamic processes in photochemical systems. This Perspective introduces asynchronous and interferometric nonlinear spectroscopy (AI-NS), a spectroscopic technique that combines asynchronously generated laser pulses and interferometric detection, offering an unprecedented temporal dynamic range with high spectral resolution and rapid data acquisition capabilities. By eliminating the need for mechanical delay stages, AI-NS facilitates the rapid collection of time-resolved data on dynamics ranging from femtoseconds to nanoseconds while simultaneously distinguishing frequency-dependent responses. Here, we detail the technical methodology of AI-NS and explore its applications to the studies of various systems, including semiconductors and biological systems. Additionally, we highlight prospective advancements, such as integration with multidimensional spectroscopy techniques. AI-NS not only expands the scope of spectroscopic analysis but also opens new avenues for the exploration of diverse materials and molecular systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Predicting Ionic Conductivity of Imidazolium-Based Ionic Liquid Mixtures Using Quantum-Mechanically Derived Partial Charges in the Condensed Phase. Bacterial Swimming and Accumulation on Endothelial Cell Surfaces. Intrinsically Disordered Proteins Can Behave as Different Polymers across Their Conformational Ensemble. Toward the Evolutionary Optimisation of Small Molecules Within Coarse-Grained Simulations: Training Molecules to Hide Behind Lipid Head Groups. Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1