IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-01-29 DOI:10.1021/acsaem.4c0290310.1021/acsaem.4c02903
Mohammad Zaid, Kiran Kumar Garlapati, Vilas G. Pol and Surendra K. Martha*, 
{"title":"Room-Temperature Synthesis of Carbon-Encapsulated Na3V2O2(PO4)2F Nanoparticles: A Cost-Effective, High-Power Cathode for Sodium-Ion Batteries","authors":"Mohammad Zaid,&nbsp;Kiran Kumar Garlapati,&nbsp;Vilas G. Pol and Surendra K. Martha*,&nbsp;","doi":"10.1021/acsaem.4c0290310.1021/acsaem.4c02903","DOIUrl":null,"url":null,"abstract":"<p >Sodium-ion batteries (SIBs) offer a propitious choice to lithium-ion batteries (LIBs) due to sodium’s abundance and lower cost. However, SIBs’ commercial adoption is hindered by their lower energy density and higher cathode material production costs compared to those of LIBs. This study synthesizes Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F (NVOPF) nanoparticles at room temperature using solid-state mechanochemical synthesis, followed by carbon encapsulation. Pristine NVOPF achieves an initial gravimetric discharge capacity of 100 mAh g<sup>–1</sup> at a 0.1 C rate and delivers 98 mAh g<sup>–1</sup> at a 1 C rate, retaining 80% of its capacity over 250 cycles at a 1 C rate. Incorporating high surface area carbon (HSAC) enhances the intrinsic electronic conductivity of NVOPF. The HSAC-NVOPF composite shows improved cycling stability and higher rate capability, retaining 89.9% of its initial capacity after 500 cycles at a 1 C rate and 90% after 1000 cycles at 3 C rate due to fast sodium-ion diffusion and delivering 94 mAh g<sup>–1</sup> at a 20 C rate. This improvement is attributed to enhanced electrochemical reversibility and Na<sup>+</sup>-ion reaction kinetics. Reduced voltage–polarization values (113 and 111 mV for the composite vs 162 mV and 160 mV for pristine NVOPF) and lower charge transfer resistance (113 Ω cm<sup>2</sup> compared to 224 Ω cm<sup>2</sup>) indicate improved Na<sup>+</sup> ion diffusion, highlighting the potential of NVOPF cathode for promising SIBs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 3","pages":"1731–1742 1731–1742"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02903","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钠离子电池(SIB)因钠的丰富性和低成本而成为锂离子电池(LIB)的理想选择。然而,与锂离子电池相比,钠离子电池的能量密度较低,正极材料生产成本较高,这阻碍了钠离子电池的商业应用。本研究利用固态机械化学合成法在室温下合成了 Na3V2O2(PO4)2F (NVOPF)纳米粒子,然后进行了碳封装。原始 NVOPF 在 0.1 摄氏度放电速率下的初始重量放电容量为 100 mAh g-1,在 1 摄氏度放电速率下的放电容量为 98 mAh g-1,在 1 摄氏度放电速率下循环 250 次后仍能保持 80% 的容量。高比表面积碳(HSAC)的加入增强了 NVOPF 的内在电子导电性。由于钠离子扩散速度快,HSAC-NVOPF 复合材料显示出更好的循环稳定性和更高的速率能力,在 1 C 速率下循环 500 次后仍能保持 89.9% 的初始容量,在 3 C 速率下循环 1000 次后仍能保持 90% 的初始容量,在 20 C 速率下可提供 94 mAh g-1。这一改进归因于电化学可逆性和 Na+ 离子反应动力学的增强。电压极化值降低(复合材料的电压极化值分别为 113 mV 和 111 mV,而原始 NVOPF 的电压极化值分别为 162 mV 和 160 mV),电荷转移电阻降低(113 Ω cm2,而原始 NVOPF 的电荷转移电阻为 224 Ω cm2),这表明 Na+ 离子扩散得到了改善,凸显了 NVOPF 阴极在 SIB 方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Room-Temperature Synthesis of Carbon-Encapsulated Na3V2O2(PO4)2F Nanoparticles: A Cost-Effective, High-Power Cathode for Sodium-Ion Batteries

Sodium-ion batteries (SIBs) offer a propitious choice to lithium-ion batteries (LIBs) due to sodium’s abundance and lower cost. However, SIBs’ commercial adoption is hindered by their lower energy density and higher cathode material production costs compared to those of LIBs. This study synthesizes Na3V2O2(PO4)2F (NVOPF) nanoparticles at room temperature using solid-state mechanochemical synthesis, followed by carbon encapsulation. Pristine NVOPF achieves an initial gravimetric discharge capacity of 100 mAh g–1 at a 0.1 C rate and delivers 98 mAh g–1 at a 1 C rate, retaining 80% of its capacity over 250 cycles at a 1 C rate. Incorporating high surface area carbon (HSAC) enhances the intrinsic electronic conductivity of NVOPF. The HSAC-NVOPF composite shows improved cycling stability and higher rate capability, retaining 89.9% of its initial capacity after 500 cycles at a 1 C rate and 90% after 1000 cycles at 3 C rate due to fast sodium-ion diffusion and delivering 94 mAh g–1 at a 20 C rate. This improvement is attributed to enhanced electrochemical reversibility and Na+-ion reaction kinetics. Reduced voltage–polarization values (113 and 111 mV for the composite vs 162 mV and 160 mV for pristine NVOPF) and lower charge transfer resistance (113 Ω cm2 compared to 224 Ω cm2) indicate improved Na+ ion diffusion, highlighting the potential of NVOPF cathode for promising SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Unraveling Vibrational Energies of Chemical Bonds in Silver-Containing Chalcopyrite Compounds (Ag,Cu)InSe2 and Ag(In,Ga)Se2 by Low-Temperature EXAFS Analysis Investigation of the Internal Pressure Exerted by a LaNi5 Bed on a Vertical Cylindrical Vessel and Its Packing Fraction Distribution during Cyclic Hydrogen Ab/Desorption Ion Transport in Polymerized Ionic Liquids: Effects of Side Chain Flexibility and Specific Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1