Somayyeh Torabi , Zahra Zeraatpisheh , Seyed Hadi Anjamrooz , Amir Ghanbari , Syed Shadab Raza , Hadi Aligholi , Hassan Azari
{"title":"神经干细胞和伊布替尼对脊髓损伤挫伤小鼠模型中神经组织修复和功能恢复的协同作用","authors":"Somayyeh Torabi , Zahra Zeraatpisheh , Seyed Hadi Anjamrooz , Amir Ghanbari , Syed Shadab Raza , Hadi Aligholi , Hassan Azari","doi":"10.1016/j.neulet.2025.138149","DOIUrl":null,"url":null,"abstract":"<div><div>Modulating the immune response following spinal cord injury (SCI) is vital for establishing a conducive microenvironment that supports the survival and engraftment of transplanted neural stem/progenitor cells (NSPCs). Building on our prior findings of ibrutinib’s immunotherapeutic potential in acute SCI, this study investigates the impact of ibrutinib administration on NSPC survival, fate and their potential synergistic effects on tissue repair and motor function in a contusive mouse model of SCI.</div><div>Green fluorescence expressing NSPCs were transplanted into the lesion site with or without concurrent ibrutinib administration. Over four weeks, comprehensive assessments included behavioral evaluations, lesion volume measurements, and analyses of the survival, fate, and migration patterns of the transplanted cells. The results revealed that ibrutinib and NSPCs individually reduced lesion volume and improved motor functions. However, their combination significantly accelerated and enhanced motor recovery. Furthermore, ibrutinib improved cell viability, increasing markers for oligodendrocyte and neuroblast while concurrently diminishing the expression of astrocyte marker glial fibrillary acidic protein (GFAP).</div><div>In conclusion, the combined utilization of ibrutinib and NSPC transplantation presents a promising strategy for enhancing tissue repair, promoting functional recovery, and positively modulating cell behaviors in the context of SCI.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"850 ","pages":"Article 138149"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of neural stem cells and ibrutinib on neural tissue repair and functional recovery in a contusion mouse model of spinal cord injury\",\"authors\":\"Somayyeh Torabi , Zahra Zeraatpisheh , Seyed Hadi Anjamrooz , Amir Ghanbari , Syed Shadab Raza , Hadi Aligholi , Hassan Azari\",\"doi\":\"10.1016/j.neulet.2025.138149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modulating the immune response following spinal cord injury (SCI) is vital for establishing a conducive microenvironment that supports the survival and engraftment of transplanted neural stem/progenitor cells (NSPCs). Building on our prior findings of ibrutinib’s immunotherapeutic potential in acute SCI, this study investigates the impact of ibrutinib administration on NSPC survival, fate and their potential synergistic effects on tissue repair and motor function in a contusive mouse model of SCI.</div><div>Green fluorescence expressing NSPCs were transplanted into the lesion site with or without concurrent ibrutinib administration. Over four weeks, comprehensive assessments included behavioral evaluations, lesion volume measurements, and analyses of the survival, fate, and migration patterns of the transplanted cells. The results revealed that ibrutinib and NSPCs individually reduced lesion volume and improved motor functions. However, their combination significantly accelerated and enhanced motor recovery. Furthermore, ibrutinib improved cell viability, increasing markers for oligodendrocyte and neuroblast while concurrently diminishing the expression of astrocyte marker glial fibrillary acidic protein (GFAP).</div><div>In conclusion, the combined utilization of ibrutinib and NSPC transplantation presents a promising strategy for enhancing tissue repair, promoting functional recovery, and positively modulating cell behaviors in the context of SCI.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"850 \",\"pages\":\"Article 138149\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394025000370\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000370","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Synergistic effects of neural stem cells and ibrutinib on neural tissue repair and functional recovery in a contusion mouse model of spinal cord injury
Modulating the immune response following spinal cord injury (SCI) is vital for establishing a conducive microenvironment that supports the survival and engraftment of transplanted neural stem/progenitor cells (NSPCs). Building on our prior findings of ibrutinib’s immunotherapeutic potential in acute SCI, this study investigates the impact of ibrutinib administration on NSPC survival, fate and their potential synergistic effects on tissue repair and motor function in a contusive mouse model of SCI.
Green fluorescence expressing NSPCs were transplanted into the lesion site with or without concurrent ibrutinib administration. Over four weeks, comprehensive assessments included behavioral evaluations, lesion volume measurements, and analyses of the survival, fate, and migration patterns of the transplanted cells. The results revealed that ibrutinib and NSPCs individually reduced lesion volume and improved motor functions. However, their combination significantly accelerated and enhanced motor recovery. Furthermore, ibrutinib improved cell viability, increasing markers for oligodendrocyte and neuroblast while concurrently diminishing the expression of astrocyte marker glial fibrillary acidic protein (GFAP).
In conclusion, the combined utilization of ibrutinib and NSPC transplantation presents a promising strategy for enhancing tissue repair, promoting functional recovery, and positively modulating cell behaviors in the context of SCI.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.