HMGB1 血液水平与创伤性脑损伤后的神经功能预后:一项探索性研究的启示。

IF 2.8 3区 医学 Q2 CLINICAL NEUROLOGY Epilepsia Open Pub Date : 2025-02-12 DOI:10.1002/epi4.70001
Irma Wati Ngadimon, Devi Mohan, Mohd Farooq Shaikh, Ching Soong Khoo, Hui Jan Tan, Yu Mey Lee, Nor Syazwani Chamhuri, Farizal Fadzil, Nursyazwana Zolkafli, Alina Arulsamy, Jegan Thanabalan, Angel Aledo-Serrano, Wing Loong Cheong
{"title":"HMGB1 血液水平与创伤性脑损伤后的神经功能预后:一项探索性研究的启示。","authors":"Irma Wati Ngadimon, Devi Mohan, Mohd Farooq Shaikh, Ching Soong Khoo, Hui Jan Tan, Yu Mey Lee, Nor Syazwani Chamhuri, Farizal Fadzil, Nursyazwana Zolkafli, Alina Arulsamy, Jegan Thanabalan, Angel Aledo-Serrano, Wing Loong Cheong","doi":"10.1002/epi4.70001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Posttraumatic epilepsy (PTE) and cognitive impairment are severe complications following traumatic brain injury (TBI). Neuroinflammation likely contributes, but the role of specific inflammatory mediators requires clarification. High-mobility group box 1 (HMGB1) is an inflammatory cytokine released after brain injury that may be involved. This prospective longitudinal study investigated whether serum HMGB1 levels are associated with PTE development and cognitive decline over 12 months post-TBI.</p><p><strong>Methods: </strong>Serum samples were collected from 41 TBI patients, including mild and moderate to severe, at baseline, 6, and 12 months following TBI. HMGB1 was quantified by ELISA alongside interleukin-1β (IL-1β) and tumor necrosis factor (TNF). Cognitive assessments using validated neuropsychological assessments were performed at 6 and 12 months. The occurrence of PTE was also tracked.</p><p><strong>Results: </strong>HMGB1 remained elevated at 12 months post-TBI only in the subgroup (n = 6) that developed PTE (p = 0.026). PTE was associated with moderate to severe TBI cases. Higher HMGB1 levels at 12 months correlated with a greater decline in Addenbrooke's Cognitive Examination scores (p < 0.05). Reductions in HMGB1 (p < 0.05), IL-1β (p < 0.05) and TNF (p < 0.001) levels from 6 to 12 months correlated with improvements in cognitive scores. Multivariate regression analysis confirmed that HMGB1 level changes were independently associated with cognitive trajectory post-TBI (p = 0.003).</p><p><strong>Significance: </strong>The study highlights the importance of understanding the interactions between HMGB1 and inflammatory markers in posttraumatic neuroinflammatory responses. Targeting HMGB1 and associated markers may offer a promising strategy for managing chronic neuroinflammation and mitigating cognitive deficits in TBI patients, emphasizing the potential for targeted therapeutic interventions in this context.</p><p><strong>Plain language summary: </strong>This study examines how a protein called HMGB1 may contribute to epilepsy and cognitive deficits after traumatic brain injury (TBI). Patients with higher HMGB1 levels were more likely to develop epilepsy and experience significant cognitive decline within a year. Reducing HMGB1 and related inflammation was associated with better cognitive function and overall brain health. These findings suggest that HMGB1 could be a valuable marker and a potential target for treatments to prevent epilepsy and improve brain recovery after TBI.</p>","PeriodicalId":12038,"journal":{"name":"Epilepsia Open","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HMGB1 blood levels and neurological outcomes after traumatic brain injury: Insights from an exploratory study.\",\"authors\":\"Irma Wati Ngadimon, Devi Mohan, Mohd Farooq Shaikh, Ching Soong Khoo, Hui Jan Tan, Yu Mey Lee, Nor Syazwani Chamhuri, Farizal Fadzil, Nursyazwana Zolkafli, Alina Arulsamy, Jegan Thanabalan, Angel Aledo-Serrano, Wing Loong Cheong\",\"doi\":\"10.1002/epi4.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Posttraumatic epilepsy (PTE) and cognitive impairment are severe complications following traumatic brain injury (TBI). Neuroinflammation likely contributes, but the role of specific inflammatory mediators requires clarification. High-mobility group box 1 (HMGB1) is an inflammatory cytokine released after brain injury that may be involved. This prospective longitudinal study investigated whether serum HMGB1 levels are associated with PTE development and cognitive decline over 12 months post-TBI.</p><p><strong>Methods: </strong>Serum samples were collected from 41 TBI patients, including mild and moderate to severe, at baseline, 6, and 12 months following TBI. HMGB1 was quantified by ELISA alongside interleukin-1β (IL-1β) and tumor necrosis factor (TNF). Cognitive assessments using validated neuropsychological assessments were performed at 6 and 12 months. The occurrence of PTE was also tracked.</p><p><strong>Results: </strong>HMGB1 remained elevated at 12 months post-TBI only in the subgroup (n = 6) that developed PTE (p = 0.026). PTE was associated with moderate to severe TBI cases. Higher HMGB1 levels at 12 months correlated with a greater decline in Addenbrooke's Cognitive Examination scores (p < 0.05). Reductions in HMGB1 (p < 0.05), IL-1β (p < 0.05) and TNF (p < 0.001) levels from 6 to 12 months correlated with improvements in cognitive scores. Multivariate regression analysis confirmed that HMGB1 level changes were independently associated with cognitive trajectory post-TBI (p = 0.003).</p><p><strong>Significance: </strong>The study highlights the importance of understanding the interactions between HMGB1 and inflammatory markers in posttraumatic neuroinflammatory responses. Targeting HMGB1 and associated markers may offer a promising strategy for managing chronic neuroinflammation and mitigating cognitive deficits in TBI patients, emphasizing the potential for targeted therapeutic interventions in this context.</p><p><strong>Plain language summary: </strong>This study examines how a protein called HMGB1 may contribute to epilepsy and cognitive deficits after traumatic brain injury (TBI). Patients with higher HMGB1 levels were more likely to develop epilepsy and experience significant cognitive decline within a year. Reducing HMGB1 and related inflammation was associated with better cognitive function and overall brain health. These findings suggest that HMGB1 could be a valuable marker and a potential target for treatments to prevent epilepsy and improve brain recovery after TBI.</p>\",\"PeriodicalId\":12038,\"journal\":{\"name\":\"Epilepsia Open\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia Open\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/epi4.70001\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/epi4.70001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HMGB1 blood levels and neurological outcomes after traumatic brain injury: Insights from an exploratory study.

Objective: Posttraumatic epilepsy (PTE) and cognitive impairment are severe complications following traumatic brain injury (TBI). Neuroinflammation likely contributes, but the role of specific inflammatory mediators requires clarification. High-mobility group box 1 (HMGB1) is an inflammatory cytokine released after brain injury that may be involved. This prospective longitudinal study investigated whether serum HMGB1 levels are associated with PTE development and cognitive decline over 12 months post-TBI.

Methods: Serum samples were collected from 41 TBI patients, including mild and moderate to severe, at baseline, 6, and 12 months following TBI. HMGB1 was quantified by ELISA alongside interleukin-1β (IL-1β) and tumor necrosis factor (TNF). Cognitive assessments using validated neuropsychological assessments were performed at 6 and 12 months. The occurrence of PTE was also tracked.

Results: HMGB1 remained elevated at 12 months post-TBI only in the subgroup (n = 6) that developed PTE (p = 0.026). PTE was associated with moderate to severe TBI cases. Higher HMGB1 levels at 12 months correlated with a greater decline in Addenbrooke's Cognitive Examination scores (p < 0.05). Reductions in HMGB1 (p < 0.05), IL-1β (p < 0.05) and TNF (p < 0.001) levels from 6 to 12 months correlated with improvements in cognitive scores. Multivariate regression analysis confirmed that HMGB1 level changes were independently associated with cognitive trajectory post-TBI (p = 0.003).

Significance: The study highlights the importance of understanding the interactions between HMGB1 and inflammatory markers in posttraumatic neuroinflammatory responses. Targeting HMGB1 and associated markers may offer a promising strategy for managing chronic neuroinflammation and mitigating cognitive deficits in TBI patients, emphasizing the potential for targeted therapeutic interventions in this context.

Plain language summary: This study examines how a protein called HMGB1 may contribute to epilepsy and cognitive deficits after traumatic brain injury (TBI). Patients with higher HMGB1 levels were more likely to develop epilepsy and experience significant cognitive decline within a year. Reducing HMGB1 and related inflammation was associated with better cognitive function and overall brain health. These findings suggest that HMGB1 could be a valuable marker and a potential target for treatments to prevent epilepsy and improve brain recovery after TBI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epilepsia Open
Epilepsia Open Medicine-Neurology (clinical)
CiteScore
4.40
自引率
6.70%
发文量
104
审稿时长
8 weeks
期刊最新文献
Three cases of atypical Rasmussen's encephalitis with delayed-onset seizures. GATAD2B-related developmental and epileptic encephalopathy (DEE): Extending the epilepsy phenotype and a literature appraisal. Intrinsic brain network stability during kainic acid-induced epileptogenesis. Diagnostic yield of utilizing 24-72-hour video electroencephalographic monitoring in the diagnosis of seizures presenting as paroxysmal events in resource-limited settings. Spike detection in the wild: Screening of suspected temporal lobe epilepsy cases using a tailored 2-channel wearable EEG.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1