{"title":"基于深度核学习的 2000-2019 年中国 0.1° 分辨率 6 小时冻雨数据集。","authors":"Junfei Liu, Kai Liu, Ming Wang","doi":"10.1038/s41597-025-04582-z","DOIUrl":null,"url":null,"abstract":"<p><p>Freezing rain (FR) event is a highly catastrophic event, significantly impact human habitats. However, there is still a substantial lack of gridded FR data. Here, we present a comprehensive gridded FR dataset across China from January 1, 2000, to December 31, 2019, utilizing station data from the China Meteorological Administration combined with ERA5-land and pressure level data. Employing Deep Kernel Learning (DKL), we effectively classified and predicted FR occurrences, demonstrating significant advancements in capturing complex atmospheric conditions conducive to FR. The DKL model, validated against ERA5 data for the winter of 2024 and the Ramer Scheme in 2008, 2011, and 2018, showcases superior classified power over traditional methods, achieving remarkable accuracy of 0.991, Area Under the Curve (AUC) of 0.999, recall of 0.973, and precision of 0.989. The implications of this research are profound, offering a robust database for academic and practical applications in weather forecasting, climate modelling, and disaster management, thereby enhancing our understanding and mitigation strategies for FR impacts.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"240"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814238/pdf/","citationCount":"0","resultStr":"{\"title\":\"A 6-hourly 0.1° resolution freezing rain dataset of China during 2000-2019 based on deep kernel learning.\",\"authors\":\"Junfei Liu, Kai Liu, Ming Wang\",\"doi\":\"10.1038/s41597-025-04582-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Freezing rain (FR) event is a highly catastrophic event, significantly impact human habitats. However, there is still a substantial lack of gridded FR data. Here, we present a comprehensive gridded FR dataset across China from January 1, 2000, to December 31, 2019, utilizing station data from the China Meteorological Administration combined with ERA5-land and pressure level data. Employing Deep Kernel Learning (DKL), we effectively classified and predicted FR occurrences, demonstrating significant advancements in capturing complex atmospheric conditions conducive to FR. The DKL model, validated against ERA5 data for the winter of 2024 and the Ramer Scheme in 2008, 2011, and 2018, showcases superior classified power over traditional methods, achieving remarkable accuracy of 0.991, Area Under the Curve (AUC) of 0.999, recall of 0.973, and precision of 0.989. The implications of this research are profound, offering a robust database for academic and practical applications in weather forecasting, climate modelling, and disaster management, thereby enhancing our understanding and mitigation strategies for FR impacts.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"240\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814238/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-04582-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04582-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A 6-hourly 0.1° resolution freezing rain dataset of China during 2000-2019 based on deep kernel learning.
Freezing rain (FR) event is a highly catastrophic event, significantly impact human habitats. However, there is still a substantial lack of gridded FR data. Here, we present a comprehensive gridded FR dataset across China from January 1, 2000, to December 31, 2019, utilizing station data from the China Meteorological Administration combined with ERA5-land and pressure level data. Employing Deep Kernel Learning (DKL), we effectively classified and predicted FR occurrences, demonstrating significant advancements in capturing complex atmospheric conditions conducive to FR. The DKL model, validated against ERA5 data for the winter of 2024 and the Ramer Scheme in 2008, 2011, and 2018, showcases superior classified power over traditional methods, achieving remarkable accuracy of 0.991, Area Under the Curve (AUC) of 0.999, recall of 0.973, and precision of 0.989. The implications of this research are profound, offering a robust database for academic and practical applications in weather forecasting, climate modelling, and disaster management, thereby enhancing our understanding and mitigation strategies for FR impacts.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.