在CAM-PDX模型中,穿心莲内酯通过靶向血管生成和诱导细胞凋亡抑制宫颈癌的进展。

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2025-02-11 DOI:10.17305/bb.2025.11432
Wanwan Zou, Jun Lou, Yun Yi, Yiming Cui, Xiaoyan Chu
{"title":"在CAM-PDX模型中,穿心莲内酯通过靶向血管生成和诱导细胞凋亡抑制宫颈癌的进展。","authors":"Wanwan Zou, Jun Lou, Yun Yi, Yiming Cui, Xiaoyan Chu","doi":"10.17305/bb.2025.11432","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer poses significant clinical challenges, particularly in advanced stages. This study explores the therapeutic potential of andrographolide (AND), a bioactive compound derived from Andrographis paniculata, in mitigating cervical cancer progression using the chick embryo chorioallantoic membrane patient-derived xenograft (CAM-PDX) model. The model was validated through hematoxylin-eosin (H&E) staining and immunohistochemistry, which confirmed its ability to accurately replicate the histological and molecular characteristics of patient-derived xenografts (PDXs), establishing its reliability for therapeutic screening. A dose of 20 mg/kg AND was selected for further evaluation based on preliminary chorioallantoic membrane (CAM) assay findings. In the CAM-PDX model, AND significantly inhibited tumor growth, primarily by reducing angiogenesis and vessel density. Immunohistochemical analysis revealed that AND downregulated key proteins associated with cancer cell proliferation and survival, including Ki67, B-cell lymphoma 2 (BCL-2), and Erythroblast transformation-specific-related gene (ERG). These results indicate that AND not only disrupts tumor angiogenesis but also induces cell cycle arrest and promotes apoptosis in cervical cancer cells. In summary, this study successfully established a reproducible CAM-PDX model for drug evaluation and highlighted the potential of AND as a promising therapeutic candidate for cervical cancer, warranting further clinical investigation.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Andrographolide suppresses cervical cancer progression by targeting angiogenesis and inducing apoptosis in a CAM-PDX model.\",\"authors\":\"Wanwan Zou, Jun Lou, Yun Yi, Yiming Cui, Xiaoyan Chu\",\"doi\":\"10.17305/bb.2025.11432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cervical cancer poses significant clinical challenges, particularly in advanced stages. This study explores the therapeutic potential of andrographolide (AND), a bioactive compound derived from Andrographis paniculata, in mitigating cervical cancer progression using the chick embryo chorioallantoic membrane patient-derived xenograft (CAM-PDX) model. The model was validated through hematoxylin-eosin (H&E) staining and immunohistochemistry, which confirmed its ability to accurately replicate the histological and molecular characteristics of patient-derived xenografts (PDXs), establishing its reliability for therapeutic screening. A dose of 20 mg/kg AND was selected for further evaluation based on preliminary chorioallantoic membrane (CAM) assay findings. In the CAM-PDX model, AND significantly inhibited tumor growth, primarily by reducing angiogenesis and vessel density. Immunohistochemical analysis revealed that AND downregulated key proteins associated with cancer cell proliferation and survival, including Ki67, B-cell lymphoma 2 (BCL-2), and Erythroblast transformation-specific-related gene (ERG). These results indicate that AND not only disrupts tumor angiogenesis but also induces cell cycle arrest and promotes apoptosis in cervical cancer cells. In summary, this study successfully established a reproducible CAM-PDX model for drug evaluation and highlighted the potential of AND as a promising therapeutic candidate for cervical cancer, warranting further clinical investigation.</p>\",\"PeriodicalId\":72398,\"journal\":{\"name\":\"Biomolecules & biomedicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17305/bb.2025.11432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2025.11432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Andrographolide suppresses cervical cancer progression by targeting angiogenesis and inducing apoptosis in a CAM-PDX model.

Cervical cancer poses significant clinical challenges, particularly in advanced stages. This study explores the therapeutic potential of andrographolide (AND), a bioactive compound derived from Andrographis paniculata, in mitigating cervical cancer progression using the chick embryo chorioallantoic membrane patient-derived xenograft (CAM-PDX) model. The model was validated through hematoxylin-eosin (H&E) staining and immunohistochemistry, which confirmed its ability to accurately replicate the histological and molecular characteristics of patient-derived xenografts (PDXs), establishing its reliability for therapeutic screening. A dose of 20 mg/kg AND was selected for further evaluation based on preliminary chorioallantoic membrane (CAM) assay findings. In the CAM-PDX model, AND significantly inhibited tumor growth, primarily by reducing angiogenesis and vessel density. Immunohistochemical analysis revealed that AND downregulated key proteins associated with cancer cell proliferation and survival, including Ki67, B-cell lymphoma 2 (BCL-2), and Erythroblast transformation-specific-related gene (ERG). These results indicate that AND not only disrupts tumor angiogenesis but also induces cell cycle arrest and promotes apoptosis in cervical cancer cells. In summary, this study successfully established a reproducible CAM-PDX model for drug evaluation and highlighted the potential of AND as a promising therapeutic candidate for cervical cancer, warranting further clinical investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Andrographolide suppresses cervical cancer progression by targeting angiogenesis and inducing apoptosis in a CAM-PDX model. Multi-omics reveals that ST6GAL1 promotes colorectal cancer progression through LGALS3BP sialylation. Jianpi Yiqi Busui prescription alleviates myasthenia gravis by regulating Th17 through the TAK1/P38 MAPK/eIF-4E signaling pathway. Fecal microbiota transplantation alleviates radiation enteritis by modulating gut microbiota and metabolite profiles. Neuroimaging in the diagnosis and treatment of cerebral toxoplasmosis in children with severe β-thalassemia after allo-HSCT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1