IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2025-02-12 DOI:10.1038/s41597-025-04536-5
Oussama Abdul Hay, Xiaoqian Huang, Abdulla Ayyad, Eslam Sherif, Randa Almadhoun, Yusra Abdulrahman, Lakmal Seneviratne, Abdulqader Abusafieh, Yahya Zweiri
{"title":"E-POSE: A Large Scale Event Camera Dataset for Object Pose Estimation.","authors":"Oussama Abdul Hay, Xiaoqian Huang, Abdulla Ayyad, Eslam Sherif, Randa Almadhoun, Yusra Abdulrahman, Lakmal Seneviratne, Abdulqader Abusafieh, Yahya Zweiri","doi":"10.1038/s41597-025-04536-5","DOIUrl":null,"url":null,"abstract":"<p><p>Robotic automation requires precise object pose estimation for effective grasping and manipulation. With their high dynamic range and temporal resolution, event-based cameras offer a promising alternative to conventional cameras. Despite their success in tracking, segmentation, classification, obstacle avoidance, and navigation, their use for 6D object pose estimation is relatively unexplored due to the lack of datasets. This paper introduces an extensive dataset based on Yale-CMU-Berkeley (YCB) objects, including event packets with associated poses, spike images, masks, 3D bounding box coordinates, segmented events, and a 3-channel event image for validation. Featuring 13 YCB objects, the dataset covers both cluttered and uncluttered scenes across 18 scenarios with varying speeds and illumination. It contains 306 sequences, totaling over an hour and around 1.5 billion events, making it the largest and most diverse event-based dataset for object pose estimation. This resource aims to support researchers in developing and testing object pose estimation algorithms and solutions.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"245"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04536-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

机器人自动化需要精确的物体姿态估计,以实现有效的抓取和操纵。基于事件的相机具有高动态范围和时间分辨率,是传统相机的理想替代品。尽管它们在跟踪、分割、分类、避障和导航方面取得了成功,但由于缺乏数据集,它们在 6D 物体姿态估计方面的应用还相对欠缺。本文介绍了基于 Yale-CMU-Berkeley (YCB) 物体的大量数据集,包括与相关姿势、尖峰图像、遮罩、三维边界框坐标、分割事件相关的事件包,以及用于验证的三通道事件图像。该数据集包含 13 个 YCB 物体,涵盖 18 种不同速度和光照场景中的杂乱和非杂乱场景。该数据集包含 306 个序列,总时长超过 1 小时,包含约 15 亿个事件,是用于物体姿态估计的最大、最多样化的基于事件的数据集。该资源旨在支持研究人员开发和测试物体姿态估计算法和解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E-POSE: A Large Scale Event Camera Dataset for Object Pose Estimation.

Robotic automation requires precise object pose estimation for effective grasping and manipulation. With their high dynamic range and temporal resolution, event-based cameras offer a promising alternative to conventional cameras. Despite their success in tracking, segmentation, classification, obstacle avoidance, and navigation, their use for 6D object pose estimation is relatively unexplored due to the lack of datasets. This paper introduces an extensive dataset based on Yale-CMU-Berkeley (YCB) objects, including event packets with associated poses, spike images, masks, 3D bounding box coordinates, segmented events, and a 3-channel event image for validation. Featuring 13 YCB objects, the dataset covers both cluttered and uncluttered scenes across 18 scenarios with varying speeds and illumination. It contains 306 sequences, totaling over an hour and around 1.5 billion events, making it the largest and most diverse event-based dataset for object pose estimation. This resource aims to support researchers in developing and testing object pose estimation algorithms and solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A chromosome-level genome assembly of the mud carp (Cirrhinus molitorella). A semantic approach to mapping the Provenance Ontology to Basic Formal Ontology. Author Correction: Global Crop-Specific Fertilization Dataset from 1961-2019. Data on the diet and nutrition of urban and rural bumblebees. SpiDa-MRI: behavioral and (f)MRI data of adults with fear of spiders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1