用于纯磁共振放疗工作流程的合成 CT 图像的幻觉自动检测。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-02-25 DOI:10.1088/1361-6560/adb5eb
Abdul K Parchur, Mohammad Zarenia, Colette Gage, Eric S Paulson, Ergun Ahunbay
{"title":"用于纯磁共振放疗工作流程的合成 CT 图像的幻觉自动检测。","authors":"Abdul K Parchur, Mohammad Zarenia, Colette Gage, Eric S Paulson, Ergun Ahunbay","doi":"10.1088/1361-6560/adb5eb","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Artificial intelligence (AI)-generated synthetic CT (sCT) images have become commercially available to provide electron densities and reference anatomies in MR-only radiotherapy workflows. However, hallucinations (false regions of bone or air) introduced in AI-generated sCT images may affect the accuracy of dose calculation and patient setup verification. We developed a tool to detect bone hallucinations and/or inaccuracies in AI-generated pelvic sCT images used in MR-only workflows.<i>Approach</i>. A deep learning auto segmentation (DLAS) model was trained to auto-segment bone on MR images. The model was implemented with a 3D SegResNet network architecture using the MONAI framework with a training dataset of 86 Dixon MR image sets paired with their corresponding ground truth contours derived from planning CT images deformed to the MR images. The model performance was then assessed on an independent testing dataset (<i>n</i>= 10).<i>Main results</i>. The DLAS model-based hallucination screener identified hallucinations in bone structures using daily MR images and accurately flagged these regions on sCT images. The sensitivity of the screener is adjustable based on the distance of discrepancies between bone regions derived from sCT to bone contours generated by the DLAS. The average specificity of the DLAS model was 0.78, 0.93 and 0.98 for distance parameters of 0.8, 1.0 and 1.2 cm, respectively. The screener identified false high-density hallucination regions in the abdomen of AI-generated sCT images for all testing patients, highlighting potential issues with the training data used for the AI sCT model.<i>Significance</i>. A hallucination screener for AI-generated pelvic sCT images was developed and implemented for routine clinical use. The screener serves as an important quality assurance tool for MR-only radiotherapy workflows. By identifying potential AI-generated errors, the hallucination screener may improve the safety and accuracy of sCT images used for dose calculation and image guidance.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated hallucination detection for synthetic CT images used in MR-only radiotherapy workflows.\",\"authors\":\"Abdul K Parchur, Mohammad Zarenia, Colette Gage, Eric S Paulson, Ergun Ahunbay\",\"doi\":\"10.1088/1361-6560/adb5eb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Artificial intelligence (AI)-generated synthetic CT (sCT) images have become commercially available to provide electron densities and reference anatomies in MR-only radiotherapy workflows. However, hallucinations (false regions of bone or air) introduced in AI-generated sCT images may affect the accuracy of dose calculation and patient setup verification. We developed a tool to detect bone hallucinations and/or inaccuracies in AI-generated pelvic sCT images used in MR-only workflows.<i>Approach</i>. A deep learning auto segmentation (DLAS) model was trained to auto-segment bone on MR images. The model was implemented with a 3D SegResNet network architecture using the MONAI framework with a training dataset of 86 Dixon MR image sets paired with their corresponding ground truth contours derived from planning CT images deformed to the MR images. The model performance was then assessed on an independent testing dataset (<i>n</i>= 10).<i>Main results</i>. The DLAS model-based hallucination screener identified hallucinations in bone structures using daily MR images and accurately flagged these regions on sCT images. The sensitivity of the screener is adjustable based on the distance of discrepancies between bone regions derived from sCT to bone contours generated by the DLAS. The average specificity of the DLAS model was 0.78, 0.93 and 0.98 for distance parameters of 0.8, 1.0 and 1.2 cm, respectively. The screener identified false high-density hallucination regions in the abdomen of AI-generated sCT images for all testing patients, highlighting potential issues with the training data used for the AI sCT model.<i>Significance</i>. A hallucination screener for AI-generated pelvic sCT images was developed and implemented for routine clinical use. The screener serves as an important quality assurance tool for MR-only radiotherapy workflows. By identifying potential AI-generated errors, the hallucination screener may improve the safety and accuracy of sCT images used for dose calculation and image guidance.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/adb5eb\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb5eb","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated hallucination detection for synthetic CT images used in MR-only radiotherapy workflows.

Objective. Artificial intelligence (AI)-generated synthetic CT (sCT) images have become commercially available to provide electron densities and reference anatomies in MR-only radiotherapy workflows. However, hallucinations (false regions of bone or air) introduced in AI-generated sCT images may affect the accuracy of dose calculation and patient setup verification. We developed a tool to detect bone hallucinations and/or inaccuracies in AI-generated pelvic sCT images used in MR-only workflows.Approach. A deep learning auto segmentation (DLAS) model was trained to auto-segment bone on MR images. The model was implemented with a 3D SegResNet network architecture using the MONAI framework with a training dataset of 86 Dixon MR image sets paired with their corresponding ground truth contours derived from planning CT images deformed to the MR images. The model performance was then assessed on an independent testing dataset (n= 10).Main results. The DLAS model-based hallucination screener identified hallucinations in bone structures using daily MR images and accurately flagged these regions on sCT images. The sensitivity of the screener is adjustable based on the distance of discrepancies between bone regions derived from sCT to bone contours generated by the DLAS. The average specificity of the DLAS model was 0.78, 0.93 and 0.98 for distance parameters of 0.8, 1.0 and 1.2 cm, respectively. The screener identified false high-density hallucination regions in the abdomen of AI-generated sCT images for all testing patients, highlighting potential issues with the training data used for the AI sCT model.Significance. A hallucination screener for AI-generated pelvic sCT images was developed and implemented for routine clinical use. The screener serves as an important quality assurance tool for MR-only radiotherapy workflows. By identifying potential AI-generated errors, the hallucination screener may improve the safety and accuracy of sCT images used for dose calculation and image guidance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Bowel tracking for MR-guided radiotherapy: simultaneous optimization of small bowel imaging and tracking. A semi-supervised prototypical network for prostate lesion segmentation from multimodality MRI. Realistic closed-form TCP model including cell sensitivity dependence. Role of modeled high-grade glioma cell invasion and survival on the prediction of tumor progression after radiotherapy. HWA-ResMamba: automatic segmentation of coronary arteries based on residual Mamba with high-order wavelet-enhanced convolution and attention feature aggregation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1