用于嫩肤的长波红外飞秒激光的体内疗效研究。

IF 3.1 2区 物理与天体物理 Q2 OPTICS Optics letters Pub Date : 2025-02-15 DOI:10.1364/OL.555702
Jinmiao Guo, Yingying Dai, Maoxing Xiang, Changtao He, Fan Wang, Lidan Zhang, Xian Jiang, Houkun Liang
{"title":"用于嫩肤的长波红外飞秒激光的体内疗效研究。","authors":"Jinmiao Guo, Yingying Dai, Maoxing Xiang, Changtao He, Fan Wang, Lidan Zhang, Xian Jiang, Houkun Liang","doi":"10.1364/OL.555702","DOIUrl":null,"url":null,"abstract":"<p><p>Ablative lasers such as erbium-doped laser and carbon dioxide laser are currently primary tools for skin rejuvenation and treating dermatological disorders. However, during treatment, as the thermal effect exerts on both target and normal tissues simultaneously, significant effectiveness is often accompanied by a high risk of adverse reactions. To attain an appropriate thermal diffusion and thus favorable therapeutic outcome and fewer side effects, collagen-resonant femtosecond (fs) lasers hold promise as innovative tools for laser cosmetic treatments. In this study, we report, for the first time to the best of our knowledge, an <i>in vivo</i> experiment of fs laser resurfacing with collagen-resonant wavelengths of 6.1 and 7.5 μm, via an optical parametric amplifier. Our results demonstrate that long-wavelength infrared (LWIR) lasers effectively enhance the components of the dermal matrix without causing dermal ablation. The structure of collagen fiber is significantly improved with a substantial amount of new collagen formation. The increased expression of various collagen types in immunofluorescence image further demonstrates the efficacy of the LWIR fs laser in skin rejuvenation. In addition, improvement in the epidermis is more pronounced at a wavelength of 6.1 μm, with a more suitable depth of action. We anticipate that LWIR fs laser could become widely applicable in clinical settings for skin regeneration and rejuvenation.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 4","pages":"1421-1424"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In vivo</i> efficacy investigation of long-wavelength infrared femtosecond lasers for skin rejuvenation.\",\"authors\":\"Jinmiao Guo, Yingying Dai, Maoxing Xiang, Changtao He, Fan Wang, Lidan Zhang, Xian Jiang, Houkun Liang\",\"doi\":\"10.1364/OL.555702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ablative lasers such as erbium-doped laser and carbon dioxide laser are currently primary tools for skin rejuvenation and treating dermatological disorders. However, during treatment, as the thermal effect exerts on both target and normal tissues simultaneously, significant effectiveness is often accompanied by a high risk of adverse reactions. To attain an appropriate thermal diffusion and thus favorable therapeutic outcome and fewer side effects, collagen-resonant femtosecond (fs) lasers hold promise as innovative tools for laser cosmetic treatments. In this study, we report, for the first time to the best of our knowledge, an <i>in vivo</i> experiment of fs laser resurfacing with collagen-resonant wavelengths of 6.1 and 7.5 μm, via an optical parametric amplifier. Our results demonstrate that long-wavelength infrared (LWIR) lasers effectively enhance the components of the dermal matrix without causing dermal ablation. The structure of collagen fiber is significantly improved with a substantial amount of new collagen formation. The increased expression of various collagen types in immunofluorescence image further demonstrates the efficacy of the LWIR fs laser in skin rejuvenation. In addition, improvement in the epidermis is more pronounced at a wavelength of 6.1 μm, with a more suitable depth of action. We anticipate that LWIR fs laser could become widely applicable in clinical settings for skin regeneration and rejuvenation.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 4\",\"pages\":\"1421-1424\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.555702\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.555702","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vivo efficacy investigation of long-wavelength infrared femtosecond lasers for skin rejuvenation.

Ablative lasers such as erbium-doped laser and carbon dioxide laser are currently primary tools for skin rejuvenation and treating dermatological disorders. However, during treatment, as the thermal effect exerts on both target and normal tissues simultaneously, significant effectiveness is often accompanied by a high risk of adverse reactions. To attain an appropriate thermal diffusion and thus favorable therapeutic outcome and fewer side effects, collagen-resonant femtosecond (fs) lasers hold promise as innovative tools for laser cosmetic treatments. In this study, we report, for the first time to the best of our knowledge, an in vivo experiment of fs laser resurfacing with collagen-resonant wavelengths of 6.1 and 7.5 μm, via an optical parametric amplifier. Our results demonstrate that long-wavelength infrared (LWIR) lasers effectively enhance the components of the dermal matrix without causing dermal ablation. The structure of collagen fiber is significantly improved with a substantial amount of new collagen formation. The increased expression of various collagen types in immunofluorescence image further demonstrates the efficacy of the LWIR fs laser in skin rejuvenation. In addition, improvement in the epidermis is more pronounced at a wavelength of 6.1 μm, with a more suitable depth of action. We anticipate that LWIR fs laser could become widely applicable in clinical settings for skin regeneration and rejuvenation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
期刊最新文献
Compact and voltage-tunable surface plasmon polariton-based optical neural networks. Compact microsphere self-interference lithography for polarization-controlled laser parallel nanofabrication. Continuous-wave 2.3-µm Tm3+:Lu2O3 ceramic laser with ultrabroad tunability between 1845 nm and 2328 nm. Continuous-wave second-harmonic generation of green light in periodically poled thin-film lithium tantalate. Deep-UV laser source based on χ(2) optical frequency conversion and χ(3) stimulated Raman scattering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1