Xiaomeng Li, Amir Suhail, Nagarjuna A. Mahadas, Mengxue Zhang, Zhitao Hu, Morgan Stefik, Olga Kuksenok, Chuanbing Tang
{"title":"Modulating Polyethylene Mimics with Degradability via Synthesis and Modeling","authors":"Xiaomeng Li, Amir Suhail, Nagarjuna A. Mahadas, Mengxue Zhang, Zhitao Hu, Morgan Stefik, Olga Kuksenok, Chuanbing Tang","doi":"10.1021/acs.macromol.5c00039","DOIUrl":null,"url":null,"abstract":"Polyethylene (PE) is one of the most important and widely used commodity polymers in the world. It is also among the vital and notoriously nondegradable plastics. Recent efforts are revisiting different approaches to create new generations of PE mimics. We report a model system to explore mimics of functionalized high-density polyethylene (HDPE) and low-density polyethylene (LDPE) via ring-opening metathesis polymerization (ROMP) and thiol–ene click chemistry. By combining experimental and computational studies, we demonstrated that the properties of PE mimics are highly tunable by changing the ester-to-methylene ratio (E:M), with low E:M (e.g., 1:413) functional polymers having characteristics similar to those of HDPE. Controlling the branch-to-methylene ratio (B:M) from 1:159 to 1:22 provided a handle for mimicking the transformation from HDPE to LDPE characteristics. The PE mimics exhibit competitive mechanical properties, melting temperature, and high molecular weight comparable to PE while being accessible via an efficient synthetic route. Notably, the PE mimics can be degraded into oligomers and then recycled, demonstrating the potential for circularity and sustainability. This study provides valuable insights into predicting the properties of aliphatic long-chain functional polymers to mimic PE.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"38 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.5c00039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Modulating Polyethylene Mimics with Degradability via Synthesis and Modeling
Polyethylene (PE) is one of the most important and widely used commodity polymers in the world. It is also among the vital and notoriously nondegradable plastics. Recent efforts are revisiting different approaches to create new generations of PE mimics. We report a model system to explore mimics of functionalized high-density polyethylene (HDPE) and low-density polyethylene (LDPE) via ring-opening metathesis polymerization (ROMP) and thiol–ene click chemistry. By combining experimental and computational studies, we demonstrated that the properties of PE mimics are highly tunable by changing the ester-to-methylene ratio (E:M), with low E:M (e.g., 1:413) functional polymers having characteristics similar to those of HDPE. Controlling the branch-to-methylene ratio (B:M) from 1:159 to 1:22 provided a handle for mimicking the transformation from HDPE to LDPE characteristics. The PE mimics exhibit competitive mechanical properties, melting temperature, and high molecular weight comparable to PE while being accessible via an efficient synthetic route. Notably, the PE mimics can be degraded into oligomers and then recycled, demonstrating the potential for circularity and sustainability. This study provides valuable insights into predicting the properties of aliphatic long-chain functional polymers to mimic PE.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.