Yeonsoo Lim, Gyunam Park, Hojin An, Jonghwa Han, Joonhyun Bae, Ji-Hyun Kim, Yan Lee, Kyungtae Kang, Jaeyoung Sung, Sunbum Kwon
{"title":"新陈代谢启发的化学反应网络,用于化学驱动的耗散性低聚酯化反应","authors":"Yeonsoo Lim, Gyunam Park, Hojin An, Jonghwa Han, Joonhyun Bae, Ji-Hyun Kim, Yan Lee, Kyungtae Kang, Jaeyoung Sung, Sunbum Kwon","doi":"10.1002/anie.202425407","DOIUrl":null,"url":null,"abstract":"Metabolism is a complex network of chemical reactions in which transient biomolecules are continuously produced and degraded. Mimicking this dynamic process in synthetic systems poses a considerable challenge, as it requires designs that enable the exchange of energy and matter among transient molecules. In this study, we explored a chemically driven oligoesterification process operating within a highly intricate reaction network and constructed a dynamic library of transient oligoesters. Our kinetic analysis uncovered an intriguing phenomenon: oligoesters undergo parasitic exchanges, consuming one another to sustain the system's dynamics before reaching thermodynamic equilibrium. This discovery opens new opportunities for designing synthetic systems that replicate the complexity and self‐sustaining behavior of metabolic processes.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"9 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolism‐inspired chemical reaction networks for chemically driven dissipative oligoesterification\",\"authors\":\"Yeonsoo Lim, Gyunam Park, Hojin An, Jonghwa Han, Joonhyun Bae, Ji-Hyun Kim, Yan Lee, Kyungtae Kang, Jaeyoung Sung, Sunbum Kwon\",\"doi\":\"10.1002/anie.202425407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metabolism is a complex network of chemical reactions in which transient biomolecules are continuously produced and degraded. Mimicking this dynamic process in synthetic systems poses a considerable challenge, as it requires designs that enable the exchange of energy and matter among transient molecules. In this study, we explored a chemically driven oligoesterification process operating within a highly intricate reaction network and constructed a dynamic library of transient oligoesters. Our kinetic analysis uncovered an intriguing phenomenon: oligoesters undergo parasitic exchanges, consuming one another to sustain the system's dynamics before reaching thermodynamic equilibrium. This discovery opens new opportunities for designing synthetic systems that replicate the complexity and self‐sustaining behavior of metabolic processes.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202425407\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202425407","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Metabolism‐inspired chemical reaction networks for chemically driven dissipative oligoesterification
Metabolism is a complex network of chemical reactions in which transient biomolecules are continuously produced and degraded. Mimicking this dynamic process in synthetic systems poses a considerable challenge, as it requires designs that enable the exchange of energy and matter among transient molecules. In this study, we explored a chemically driven oligoesterification process operating within a highly intricate reaction network and constructed a dynamic library of transient oligoesters. Our kinetic analysis uncovered an intriguing phenomenon: oligoesters undergo parasitic exchanges, consuming one another to sustain the system's dynamics before reaching thermodynamic equilibrium. This discovery opens new opportunities for designing synthetic systems that replicate the complexity and self‐sustaining behavior of metabolic processes.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.