IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-02-04 DOI:10.1021/acssuschemeng.4c0938610.1021/acssuschemeng.4c09386
Ao-Shuang Yang, Rong Huang, Hongxia Yang, Yanbo Ma, Lei Xu, Zhipeng Liu, Rui Ma and Wenbin Yang*, 
{"title":"Elevating Solar-Thermal Conversion of Reprocessed Phase Change Materials Simultaneously toward Efficient Energy Storage and Self-Healing","authors":"Ao-Shuang Yang,&nbsp;Rong Huang,&nbsp;Hongxia Yang,&nbsp;Yanbo Ma,&nbsp;Lei Xu,&nbsp;Zhipeng Liu,&nbsp;Rui Ma and Wenbin Yang*,&nbsp;","doi":"10.1021/acssuschemeng.4c0938610.1021/acssuschemeng.4c09386","DOIUrl":null,"url":null,"abstract":"<p >To alleviate the resource shortage and environmental pollution, utilizing abundant solar energy effectively is a great challenge. In this article, a solar-thermal conversion material, Fe<sub>2</sub>O<sub>3</sub>-rGO, is integrated into the matrix of recyclable solid–solid phase change materials (RSSPCMs) to prepare solar-thermal conversion phase change materials, termed Fe<sub>2</sub>O<sub>3</sub>-rGO@RSSPCMs. The designed Fe<sub>2</sub>O<sub>3</sub>-rGO@RSSPCMs dexterously combine the solar-thermal conversion capability of Fe<sub>2</sub>O<sub>3</sub>-rGO with the thermal energy storage capability of RSSPCMs. Fe<sub>2</sub>O<sub>3</sub>-rGO@RSSPCMs exhibit a high latent heat of melting, reaching up to 108.58 J·g<sup>–1</sup>, and demonstrate significant thermal storage capacity, along with excellent solar-thermal conversion efficiency. Notably, the introduction of Fe<sub>2</sub>O<sub>3</sub>-rGO into the molecular structure, activated by simulated sunlight, endows Fe<sub>2</sub>O<sub>3</sub>-rGO@RSSPCMs with remarkable self-healing properties and recyclability. Broken Fe<sub>2</sub>O<sub>3</sub>-rGO@RSSPCMs can be healed within 480 s under simulated sunlight irradiation (300 mW·cm<sup>–2</sup>). Crucially, the structure, phase change behavior, and thermal stability of Fe<sub>2</sub>O<sub>3</sub>-rGO@RSSPCMs remain largely unchanged, even after multiple cycles. The design of Fe<sub>2</sub>O<sub>3</sub>-rGO@RSSPCMs is of considerable significance for achieving efficient solar energy utilization and promoting environmental protection.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 6","pages":"2541–2552 2541–2552"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c09386","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为缓解资源短缺和环境污染问题,有效利用丰富的太阳能是一项巨大挑战。本文将一种光热转换材料 Fe2O3-rGO 与可回收固固相变材料(RSSPCMs)基体相结合,制备出光热转换相变材料,即 Fe2O3-rGO@RSSPCMs。所设计的 Fe2O3-rGO@RSSPCM 巧妙地结合了 Fe2O3-rGO 的光热转换能力和 RSSPCM 的热能储存能力。Fe2O3-rGO@RSSPCMs 具有很高的熔化潜热,最高可达 108.58 J-g-1,具有显著的蓄热能力和出色的光热转换效率。值得注意的是,Fe2O3-rGO@RSSPCM 的分子结构中引入了 Fe2O3-rGO,在模拟太阳光的激活下,Fe2O3-rGO@RSSPCM 具有显著的自愈特性和可回收性。在模拟阳光照射(300 mW-cm-2)下,破碎的 Fe2O3-rGO@RSSPCM 可在 480 秒内愈合。最重要的是,即使经过多次循环,Fe2O3-rGO@RSSPCM 的结构、相变行为和热稳定性也基本保持不变。Fe2O3-rGO@RSSPCMs 的设计对于实现太阳能的高效利用和促进环境保护具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elevating Solar-Thermal Conversion of Reprocessed Phase Change Materials Simultaneously toward Efficient Energy Storage and Self-Healing

To alleviate the resource shortage and environmental pollution, utilizing abundant solar energy effectively is a great challenge. In this article, a solar-thermal conversion material, Fe2O3-rGO, is integrated into the matrix of recyclable solid–solid phase change materials (RSSPCMs) to prepare solar-thermal conversion phase change materials, termed Fe2O3-rGO@RSSPCMs. The designed Fe2O3-rGO@RSSPCMs dexterously combine the solar-thermal conversion capability of Fe2O3-rGO with the thermal energy storage capability of RSSPCMs. Fe2O3-rGO@RSSPCMs exhibit a high latent heat of melting, reaching up to 108.58 J·g–1, and demonstrate significant thermal storage capacity, along with excellent solar-thermal conversion efficiency. Notably, the introduction of Fe2O3-rGO into the molecular structure, activated by simulated sunlight, endows Fe2O3-rGO@RSSPCMs with remarkable self-healing properties and recyclability. Broken Fe2O3-rGO@RSSPCMs can be healed within 480 s under simulated sunlight irradiation (300 mW·cm–2). Crucially, the structure, phase change behavior, and thermal stability of Fe2O3-rGO@RSSPCMs remain largely unchanged, even after multiple cycles. The design of Fe2O3-rGO@RSSPCMs is of considerable significance for achieving efficient solar energy utilization and promoting environmental protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
In Situ Phase Transformation-Induced High-Activity Nickel–Molybdenum Catalyst for Enhancing High-Current-Density Water/Seawater Splitting Investigation on the Impact of Coexisting Component for the Catalytic Hydrogenolysis of Cellulose in Bagasse to 2,5-Hexanedione Enhanced Oxygen Reduction Reaction Kinetics of Li-Containing Oxide as a High-Performance Cathode for Solid Oxide Fuel Cells Through Synergistic Li Volatilization and Anion Doping Exploring the Enhancement on CO2 Mineralization of Solid Wastes via Amine-Looping Preparation of Hydrogen Storage Liquid Fuel by Biomass-Based Syngas from Corn Straw over a C60 Modified Hydrophobic Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1