Jia Hou , Hongru Guo , Zhengze Qiang , Guodi Lu , Mingwei Wang
{"title":"使用带有多光谱传感器芯片组的便携式光谱系统定性区分未变质和变质的党参","authors":"Jia Hou , Hongru Guo , Zhengze Qiang , Guodi Lu , Mingwei Wang","doi":"10.1016/j.jfoodeng.2025.112514","DOIUrl":null,"url":null,"abstract":"<div><div>Codonopsis Radix is a commonly used Chinese medicine and is also a food-medicine homology plant used as a food ingredient in China and Southeast Asia. Its nutritional profile, rich in polysaccharides, triterpenoids, polyacetylenes, and essential oils, renders it prone to deterioration during storage. In this study, we developed a portable, streamlined spectrometric system applicable for the rapid identification of whether Codonopsis Radix samples are deteriorated. This system centers around a multispectral sensor chipset (AS7265x) equipped with an 18-channel array spanning the visible to shortwave near-infrared spectrum (410–940 nm). We validated the system's efficacy through chemometric methods, including Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA). Additionally, we compared its performance to that of a commercial dispersive spectrometer (USB2000+). The validity and robustness of the OPLS-DA models built from the AS7265x and USB2000+ calibration spectral data were demonstrated based on the cross-validation and permutation test results, which indicated that the spectral data from the AS7265x device were comparable to those from the USB2000+ device in building a robust model that could effectively discriminate between non-deteriorated and deteriorated Codonopsis Radix samples. The prediction accuracies of the OPLS-DA methods based on the spectral data from the AS7265x and USB2000+ devices were both 95% under external validation. The experimental results confirmed that the proposed system is a powerful tool for practical, cost-effective applications in monitoring and assessment of Codonopsis Radix quality from major production areas in China.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"394 ","pages":"Article 112514"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative differentiation of non-deteriorated and deteriorated codonopsis radix using a portable spectrometric system with a multispectral sensor chipset\",\"authors\":\"Jia Hou , Hongru Guo , Zhengze Qiang , Guodi Lu , Mingwei Wang\",\"doi\":\"10.1016/j.jfoodeng.2025.112514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Codonopsis Radix is a commonly used Chinese medicine and is also a food-medicine homology plant used as a food ingredient in China and Southeast Asia. Its nutritional profile, rich in polysaccharides, triterpenoids, polyacetylenes, and essential oils, renders it prone to deterioration during storage. In this study, we developed a portable, streamlined spectrometric system applicable for the rapid identification of whether Codonopsis Radix samples are deteriorated. This system centers around a multispectral sensor chipset (AS7265x) equipped with an 18-channel array spanning the visible to shortwave near-infrared spectrum (410–940 nm). We validated the system's efficacy through chemometric methods, including Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA). Additionally, we compared its performance to that of a commercial dispersive spectrometer (USB2000+). The validity and robustness of the OPLS-DA models built from the AS7265x and USB2000+ calibration spectral data were demonstrated based on the cross-validation and permutation test results, which indicated that the spectral data from the AS7265x device were comparable to those from the USB2000+ device in building a robust model that could effectively discriminate between non-deteriorated and deteriorated Codonopsis Radix samples. The prediction accuracies of the OPLS-DA methods based on the spectral data from the AS7265x and USB2000+ devices were both 95% under external validation. The experimental results confirmed that the proposed system is a powerful tool for practical, cost-effective applications in monitoring and assessment of Codonopsis Radix quality from major production areas in China.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"394 \",\"pages\":\"Article 112514\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877425000494\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425000494","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Qualitative differentiation of non-deteriorated and deteriorated codonopsis radix using a portable spectrometric system with a multispectral sensor chipset
Codonopsis Radix is a commonly used Chinese medicine and is also a food-medicine homology plant used as a food ingredient in China and Southeast Asia. Its nutritional profile, rich in polysaccharides, triterpenoids, polyacetylenes, and essential oils, renders it prone to deterioration during storage. In this study, we developed a portable, streamlined spectrometric system applicable for the rapid identification of whether Codonopsis Radix samples are deteriorated. This system centers around a multispectral sensor chipset (AS7265x) equipped with an 18-channel array spanning the visible to shortwave near-infrared spectrum (410–940 nm). We validated the system's efficacy through chemometric methods, including Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA). Additionally, we compared its performance to that of a commercial dispersive spectrometer (USB2000+). The validity and robustness of the OPLS-DA models built from the AS7265x and USB2000+ calibration spectral data were demonstrated based on the cross-validation and permutation test results, which indicated that the spectral data from the AS7265x device were comparable to those from the USB2000+ device in building a robust model that could effectively discriminate between non-deteriorated and deteriorated Codonopsis Radix samples. The prediction accuracies of the OPLS-DA methods based on the spectral data from the AS7265x and USB2000+ devices were both 95% under external validation. The experimental results confirmed that the proposed system is a powerful tool for practical, cost-effective applications in monitoring and assessment of Codonopsis Radix quality from major production areas in China.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.