掺铝t -石墨烯:提高氰化氢检测灵敏度的创新平台

IF 2.4 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2025-02-10 DOI:10.1016/j.chemphys.2025.112648
Mounir M. Bekhit , Mustafa Mudhafar , Zainab Ahmed Abass , Prakash Kanjariya , Suhas Ballal , Abhayveer Singh , Pushpa Negi Bhakuni , Zainab Jamal Hamoodah , Fawaz Almutairi
{"title":"掺铝t -石墨烯:提高氰化氢检测灵敏度的创新平台","authors":"Mounir M. Bekhit ,&nbsp;Mustafa Mudhafar ,&nbsp;Zainab Ahmed Abass ,&nbsp;Prakash Kanjariya ,&nbsp;Suhas Ballal ,&nbsp;Abhayveer Singh ,&nbsp;Pushpa Negi Bhakuni ,&nbsp;Zainab Jamal Hamoodah ,&nbsp;Fawaz Almutairi","doi":"10.1016/j.chemphys.2025.112648","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effectiveness of pristine and aluminum-doped T-graphene (TG) nanosheets as hydrogen cyanide (HCN) sensors. Al doping modifies the electronic characteristics and reactivity of the TG, dramatically enhancing their sensing capabilities. Al-TG demonstrates a strong affinity for HCN (−16.6 kcal·mol<sup>−1</sup>) and a significant alteration in the HOMO-LUMO energy gap, measured at 13.7 %. This nanostructure exhibits a commendable recovery time of only 1.6 s, a key factor for real-time, on-site detection. This rapid recovery, combined with the strong binding affinity, makes Al-doped TG a promising candidate for developing highly sensitive and responsive HCN sensors. Natural bond orbital analysis emphasizes the critical role of charge transfer during adsorption. Furthermore, atoms in molecules analysis categorizes the nature of these interactions as partially covalent. These results pave the way for developing practical, portable, and cost-effective HCN sensors for diverse applications, ranging from industrial safety monitoring to environmental protection.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"593 ","pages":"Article 112648"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aluminum-doped T-graphene: An innovative platform for enhanced sensitivity in hydrogen cyanide detection\",\"authors\":\"Mounir M. Bekhit ,&nbsp;Mustafa Mudhafar ,&nbsp;Zainab Ahmed Abass ,&nbsp;Prakash Kanjariya ,&nbsp;Suhas Ballal ,&nbsp;Abhayveer Singh ,&nbsp;Pushpa Negi Bhakuni ,&nbsp;Zainab Jamal Hamoodah ,&nbsp;Fawaz Almutairi\",\"doi\":\"10.1016/j.chemphys.2025.112648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effectiveness of pristine and aluminum-doped T-graphene (TG) nanosheets as hydrogen cyanide (HCN) sensors. Al doping modifies the electronic characteristics and reactivity of the TG, dramatically enhancing their sensing capabilities. Al-TG demonstrates a strong affinity for HCN (−16.6 kcal·mol<sup>−1</sup>) and a significant alteration in the HOMO-LUMO energy gap, measured at 13.7 %. This nanostructure exhibits a commendable recovery time of only 1.6 s, a key factor for real-time, on-site detection. This rapid recovery, combined with the strong binding affinity, makes Al-doped TG a promising candidate for developing highly sensitive and responsive HCN sensors. Natural bond orbital analysis emphasizes the critical role of charge transfer during adsorption. Furthermore, atoms in molecules analysis categorizes the nature of these interactions as partially covalent. These results pave the way for developing practical, portable, and cost-effective HCN sensors for diverse applications, ranging from industrial safety monitoring to environmental protection.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"593 \",\"pages\":\"Article 112648\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425000497\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000497","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了原始的和掺铝的t -石墨烯(TG)纳米片作为氰化氢(HCN)传感器的有效性。Al掺杂改变了TG的电子特性和反应性,显著提高了其传感能力。Al-TG对HCN具有较强的亲和力(- 16.6 kcal·mol - 1), HOMO-LUMO能隙的变化显著,为13.7%。这种纳米结构的恢复时间仅为1.6 s,这是实时现场检测的关键因素。这种快速恢复加上强大的结合亲和力,使al掺杂TG成为开发高灵敏度和响应性HCN传感器的有希望的候选者。自然键轨道分析强调了吸附过程中电荷转移的关键作用。此外,分子分析中的原子将这些相互作用的性质分类为部分共价。这些结果为开发实用、便携和具有成本效益的HCN传感器铺平了道路,这些传感器适用于从工业安全监测到环境保护的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aluminum-doped T-graphene: An innovative platform for enhanced sensitivity in hydrogen cyanide detection
This study investigates the effectiveness of pristine and aluminum-doped T-graphene (TG) nanosheets as hydrogen cyanide (HCN) sensors. Al doping modifies the electronic characteristics and reactivity of the TG, dramatically enhancing their sensing capabilities. Al-TG demonstrates a strong affinity for HCN (−16.6 kcal·mol−1) and a significant alteration in the HOMO-LUMO energy gap, measured at 13.7 %. This nanostructure exhibits a commendable recovery time of only 1.6 s, a key factor for real-time, on-site detection. This rapid recovery, combined with the strong binding affinity, makes Al-doped TG a promising candidate for developing highly sensitive and responsive HCN sensors. Natural bond orbital analysis emphasizes the critical role of charge transfer during adsorption. Furthermore, atoms in molecules analysis categorizes the nature of these interactions as partially covalent. These results pave the way for developing practical, portable, and cost-effective HCN sensors for diverse applications, ranging from industrial safety monitoring to environmental protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
Transition from fibrous structures to micelles of sodium 2-ketooctanoate with increasing concentration in water Experimental and theoretical approach to determining the nature of energy transitions in linear halogen- and chalcogen-functionalized derivatives of thiazolo[2,3-b]quinazolines Generalized additive model (GAM) for magnetized Maxwell fluid flow over a rotating disk with endothermic/exothermic chemical reactions First-principles investigation of structural, electronic, optical, thermoelectric, and mechanical properties of Eu- and Tb-doped Sb₂Se₃ Mutation in DNA: A quantum mechanical non-adiabatic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1