可回收环氧沥青的设计优化和流变特性

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL Journal of Polymers and the Environment Pub Date : 2025-01-28 DOI:10.1007/s10924-025-03499-3
Wenyi Zhou, Junyan Yi, Laurent Brochard, Zhongshi Pei, Sainan Xie, Decheng Feng
{"title":"可回收环氧沥青的设计优化和流变特性","authors":"Wenyi Zhou,&nbsp;Junyan Yi,&nbsp;Laurent Brochard,&nbsp;Zhongshi Pei,&nbsp;Sainan Xie,&nbsp;Decheng Feng","doi":"10.1007/s10924-025-03499-3","DOIUrl":null,"url":null,"abstract":"<div><p>Epoxy asphalt serves as a vital material in infrastructure construction; however, its inefficient regeneration process hampers broader adoption. To overcome this challenge, the concept of recyclable epoxy asphalt, harnessing the reversibility of dynamic covalent bonds, has been introduced. In prior research, we successfully developed and validated recyclable epoxy asphalt incorporating Diels–Alder reaction bonds. This study focuses on enhancing performance through design optimization and rheological property assessment of recyclable epoxy asphalt. By employing response surface methodology, 13 distinct compositions varying two parameters and evaluating three mechanical properties were devised to determine the optimal material formulation for recyclable epoxy asphalt. Subsequently, the recyclable epoxy asphalt underwent controlled aging and regeneration processes. Finally, the study evaluated the chemical composition and rheological properties of recyclable epoxy asphalt before and after regeneration. The optimization procedure identified the ideal composition of recyclable epoxy asphalt as 54% asphalt, 15% epoxy monomer, and 31% curing agent. The durability of the Diels–Alder reaction bonds’ reversibility under prolonged use is pivotal to the regeneration process. Rheological analysis suggests that moderate use enhances the performance of recyclable epoxy asphalt, with partial recovery achievable through the regeneration process. The preparation-aging-regeneration cycle underscores the practicality of recyclable epoxy asphalt, offering substantial environmental benefits and promising future applications.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 3","pages":"1651 - 1665"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Optimization and Rheological Property of Recyclable Epoxy Asphalt\",\"authors\":\"Wenyi Zhou,&nbsp;Junyan Yi,&nbsp;Laurent Brochard,&nbsp;Zhongshi Pei,&nbsp;Sainan Xie,&nbsp;Decheng Feng\",\"doi\":\"10.1007/s10924-025-03499-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epoxy asphalt serves as a vital material in infrastructure construction; however, its inefficient regeneration process hampers broader adoption. To overcome this challenge, the concept of recyclable epoxy asphalt, harnessing the reversibility of dynamic covalent bonds, has been introduced. In prior research, we successfully developed and validated recyclable epoxy asphalt incorporating Diels–Alder reaction bonds. This study focuses on enhancing performance through design optimization and rheological property assessment of recyclable epoxy asphalt. By employing response surface methodology, 13 distinct compositions varying two parameters and evaluating three mechanical properties were devised to determine the optimal material formulation for recyclable epoxy asphalt. Subsequently, the recyclable epoxy asphalt underwent controlled aging and regeneration processes. Finally, the study evaluated the chemical composition and rheological properties of recyclable epoxy asphalt before and after regeneration. The optimization procedure identified the ideal composition of recyclable epoxy asphalt as 54% asphalt, 15% epoxy monomer, and 31% curing agent. The durability of the Diels–Alder reaction bonds’ reversibility under prolonged use is pivotal to the regeneration process. Rheological analysis suggests that moderate use enhances the performance of recyclable epoxy asphalt, with partial recovery achievable through the regeneration process. The preparation-aging-regeneration cycle underscores the practicality of recyclable epoxy asphalt, offering substantial environmental benefits and promising future applications.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 3\",\"pages\":\"1651 - 1665\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03499-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03499-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design Optimization and Rheological Property of Recyclable Epoxy Asphalt

Epoxy asphalt serves as a vital material in infrastructure construction; however, its inefficient regeneration process hampers broader adoption. To overcome this challenge, the concept of recyclable epoxy asphalt, harnessing the reversibility of dynamic covalent bonds, has been introduced. In prior research, we successfully developed and validated recyclable epoxy asphalt incorporating Diels–Alder reaction bonds. This study focuses on enhancing performance through design optimization and rheological property assessment of recyclable epoxy asphalt. By employing response surface methodology, 13 distinct compositions varying two parameters and evaluating three mechanical properties were devised to determine the optimal material formulation for recyclable epoxy asphalt. Subsequently, the recyclable epoxy asphalt underwent controlled aging and regeneration processes. Finally, the study evaluated the chemical composition and rheological properties of recyclable epoxy asphalt before and after regeneration. The optimization procedure identified the ideal composition of recyclable epoxy asphalt as 54% asphalt, 15% epoxy monomer, and 31% curing agent. The durability of the Diels–Alder reaction bonds’ reversibility under prolonged use is pivotal to the regeneration process. Rheological analysis suggests that moderate use enhances the performance of recyclable epoxy asphalt, with partial recovery achievable through the regeneration process. The preparation-aging-regeneration cycle underscores the practicality of recyclable epoxy asphalt, offering substantial environmental benefits and promising future applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
期刊最新文献
Design Optimization and Rheological Property of Recyclable Epoxy Asphalt Advanced Hydrogel Dressing with Zinc Oxide-Copper Oxide Nanocomposite for Effective Wound Management: Mechanochemistry, Antibacterial Efficacy, Cytocompatibility and Wound Healing Potentials Enhancing Corn Starch Hydrogels for Effective Sorption of Potentially Toxic Metals: The Role of Amylose and Amylopectin Content Bioplastic (Polyhydroxybutyrate) Synthesis Using Orange Wastes by the Marine Bacterium Bacillus sp. Caspian04 Preparation of Copolymers Based on Aniline and 2[2-chloro-1-methylbut-2-en-1-yl]Aniline and Their Application for the Removal of Methyl Orange from Aqueous Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1