通过网络分析探索药物不良反应和疾病表型的共同机制。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2025-02-10 DOI:10.1016/j.crmeth.2025.100990
Farzaneh Firoozbakht, Maria Louise Elkjaer, Diane E Handy, Rui-Sheng Wang, Zoe Chervontseva, Matthias Rarey, Joseph Loscalzo, Jan Baumbach, Olga Tsoy
{"title":"通过网络分析探索药物不良反应和疾病表型的共同机制。","authors":"Farzaneh Firoozbakht, Maria Louise Elkjaer, Diane E Handy, Rui-Sheng Wang, Zoe Chervontseva, Matthias Rarey, Joseph Loscalzo, Jan Baumbach, Olga Tsoy","doi":"10.1016/j.crmeth.2025.100990","DOIUrl":null,"url":null,"abstract":"<p><p>The need for a deeper understanding of adverse drug reaction (ADR) mechanisms is vital for improving drug safety and repurposing. This study introduces Drug Adverse Reaction Mechanism Explainer (DREAMER), a network-based framework that uses a comprehensive knowledge graph to uncover molecular mechanisms underlying ADRs and disease phenotypes. By examining shared phenotypes of drugs and diseases and their effects on protein-protein interaction networks, DREAMER identifies proteins linked to ADR mechanisms. Applied to 649 ADRs, DREAMER identified molecular mechanisms for 67 ADRs, including ventricular arrhythmia and metabolic acidosis, and emphasized pathways like GABAergic signaling and coagulation proteins in personality disorders and intracranial hemorrhage. We further demonstrate the application of DREAMER in drug repurposing and propose sotalol, ranolazine, and diltiazem as candidate drugs to be repurposed for cardiac arrest. In summary, DREAMER effectively detects molecular mechanisms underlying phenotypes, emphasizing the importance of network-based analyses with integrative data for enhancing drug safety and accelerating the discovery of novel therapeutic strategies.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100990"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring common mechanisms of adverse drug reactions and disease phenotypes through network-based analysis.\",\"authors\":\"Farzaneh Firoozbakht, Maria Louise Elkjaer, Diane E Handy, Rui-Sheng Wang, Zoe Chervontseva, Matthias Rarey, Joseph Loscalzo, Jan Baumbach, Olga Tsoy\",\"doi\":\"10.1016/j.crmeth.2025.100990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The need for a deeper understanding of adverse drug reaction (ADR) mechanisms is vital for improving drug safety and repurposing. This study introduces Drug Adverse Reaction Mechanism Explainer (DREAMER), a network-based framework that uses a comprehensive knowledge graph to uncover molecular mechanisms underlying ADRs and disease phenotypes. By examining shared phenotypes of drugs and diseases and their effects on protein-protein interaction networks, DREAMER identifies proteins linked to ADR mechanisms. Applied to 649 ADRs, DREAMER identified molecular mechanisms for 67 ADRs, including ventricular arrhythmia and metabolic acidosis, and emphasized pathways like GABAergic signaling and coagulation proteins in personality disorders and intracranial hemorrhage. We further demonstrate the application of DREAMER in drug repurposing and propose sotalol, ranolazine, and diltiazem as candidate drugs to be repurposed for cardiac arrest. In summary, DREAMER effectively detects molecular mechanisms underlying phenotypes, emphasizing the importance of network-based analyses with integrative data for enhancing drug safety and accelerating the discovery of novel therapeutic strategies.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"100990\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.100990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.100990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring common mechanisms of adverse drug reactions and disease phenotypes through network-based analysis.

The need for a deeper understanding of adverse drug reaction (ADR) mechanisms is vital for improving drug safety and repurposing. This study introduces Drug Adverse Reaction Mechanism Explainer (DREAMER), a network-based framework that uses a comprehensive knowledge graph to uncover molecular mechanisms underlying ADRs and disease phenotypes. By examining shared phenotypes of drugs and diseases and their effects on protein-protein interaction networks, DREAMER identifies proteins linked to ADR mechanisms. Applied to 649 ADRs, DREAMER identified molecular mechanisms for 67 ADRs, including ventricular arrhythmia and metabolic acidosis, and emphasized pathways like GABAergic signaling and coagulation proteins in personality disorders and intracranial hemorrhage. We further demonstrate the application of DREAMER in drug repurposing and propose sotalol, ranolazine, and diltiazem as candidate drugs to be repurposed for cardiac arrest. In summary, DREAMER effectively detects molecular mechanisms underlying phenotypes, emphasizing the importance of network-based analyses with integrative data for enhancing drug safety and accelerating the discovery of novel therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
A real-time, multi-subject three-dimensional pose tracking system for the behavioral analysis of non-human primates. Non-invasive real-time pulsed Doppler assessment of blood flow in mouse ophthalmic artery. A probabilistic modeling framework for genomic networks incorporating sample heterogeneity. Exploring common mechanisms of adverse drug reactions and disease phenotypes through network-based analysis. Mathematically mapping the network of cells in the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1