使用各种高阶剪切变形理论对功能分层和层压复合梁进行静态分析:混合有限元模型研究

IF 4.4 2区 工程技术 Q1 MECHANICS European Journal of Mechanics A-Solids Pub Date : 2025-02-11 DOI:10.1016/j.euromechsol.2025.105596
Abdullah Müsevitoğlu , Atilla Özütok , J.N. Reddy
{"title":"使用各种高阶剪切变形理论对功能分层和层压复合梁进行静态分析:混合有限元模型研究","authors":"Abdullah Müsevitoğlu ,&nbsp;Atilla Özütok ,&nbsp;J.N. Reddy","doi":"10.1016/j.euromechsol.2025.105596","DOIUrl":null,"url":null,"abstract":"<div><div>Technological advancements continuously increase the demand for advanced materials. Laminated composites and Functionally Graded Materials (FGMs) are preferred for their high strength and lightweight properties. This study examines the static behavior of laminated composite and functionally graded beams. The field equations are formulated using the principle of virtual displacements. A functional is derived using a generalized higher-order shear deformation theory that incorporates several existing beam theories as special cases. A mixed finite element model of this theory is developed, treating displacement, force, and moment as nodal degrees of freedom. Various beam problems with different thickness functions and boundary conditions are analyzed. A comparison of the present model’s numerical results with those in the literature shows that the present solutions for both laminated composite and functionally graded beams are accurate. Additionally, a detailed study of the stiffness coefficients of functionally graded beams is conducted.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"111 ","pages":"Article 105596"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static analysis of functionally graded and laminated composite beams using various higher-order shear deformation theories: A study with mixed finite element models\",\"authors\":\"Abdullah Müsevitoğlu ,&nbsp;Atilla Özütok ,&nbsp;J.N. Reddy\",\"doi\":\"10.1016/j.euromechsol.2025.105596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Technological advancements continuously increase the demand for advanced materials. Laminated composites and Functionally Graded Materials (FGMs) are preferred for their high strength and lightweight properties. This study examines the static behavior of laminated composite and functionally graded beams. The field equations are formulated using the principle of virtual displacements. A functional is derived using a generalized higher-order shear deformation theory that incorporates several existing beam theories as special cases. A mixed finite element model of this theory is developed, treating displacement, force, and moment as nodal degrees of freedom. Various beam problems with different thickness functions and boundary conditions are analyzed. A comparison of the present model’s numerical results with those in the literature shows that the present solutions for both laminated composite and functionally graded beams are accurate. Additionally, a detailed study of the stiffness coefficients of functionally graded beams is conducted.</div></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"111 \",\"pages\":\"Article 105596\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753825000300\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825000300","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Static analysis of functionally graded and laminated composite beams using various higher-order shear deformation theories: A study with mixed finite element models
Technological advancements continuously increase the demand for advanced materials. Laminated composites and Functionally Graded Materials (FGMs) are preferred for their high strength and lightweight properties. This study examines the static behavior of laminated composite and functionally graded beams. The field equations are formulated using the principle of virtual displacements. A functional is derived using a generalized higher-order shear deformation theory that incorporates several existing beam theories as special cases. A mixed finite element model of this theory is developed, treating displacement, force, and moment as nodal degrees of freedom. Various beam problems with different thickness functions and boundary conditions are analyzed. A comparison of the present model’s numerical results with those in the literature shows that the present solutions for both laminated composite and functionally graded beams are accurate. Additionally, a detailed study of the stiffness coefficients of functionally graded beams is conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
期刊最新文献
Modeling the biomechanical properties of soft biological tissues: Constitutive theories Energy harvesting performance of fluid-immersed bimorph FG-GPLRC sandwich microplates in thermal gradient and magnetic field environments: A modified strain gradient theory approach Effects of external stack and lateral pressures on Li dendrite growth by phase field modelling Shock compression and spallation of ABS and ABS/PC blend under plate impact Bending performance and crack propagation in biomimetic honeycomb structures for sustainable lightweight design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1