无标记多视角三维人体姿态估计:一项调查

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2025-02-03 DOI:10.1016/j.imavis.2025.105437
Ana Filipa Rodrigues Nogueira , Hélder P. Oliveira , Luís F. Teixeira
{"title":"无标记多视角三维人体姿态估计:一项调查","authors":"Ana Filipa Rodrigues Nogueira ,&nbsp;Hélder P. Oliveira ,&nbsp;Luís F. Teixeira","doi":"10.1016/j.imavis.2025.105437","DOIUrl":null,"url":null,"abstract":"<div><div>3D human pose estimation aims to reconstruct the human skeleton of all the individuals in a scene by detecting several body joints. The creation of accurate and efficient methods is required for several real-world applications including animation, human–robot interaction, surveillance systems or sports, among many others. However, several obstacles such as occlusions, random camera perspectives, or the scarcity of 3D labelled data, have been hampering the models’ performance and limiting their deployment in real-world scenarios. The higher availability of cameras has led researchers to explore multi-view solutions due to the advantage of being able to exploit different perspectives to reconstruct the pose.</div><div>Most existing reviews focus mainly on monocular 3D human pose estimation and a comprehensive survey only on multi-view approaches to determine the 3D pose has been missing since 2012. Thus, the goal of this survey is to fill that gap and present an overview of the methodologies related to 3D pose estimation in multi-view settings, understand what were the strategies found to address the various challenges and also, identify their limitations. According to the reviewed articles, it was possible to find that most methods are fully-supervised approaches based on geometric constraints. Nonetheless, most of the methods suffer from 2D pose mismatches, to which the incorporation of temporal consistency and depth information have been suggested to reduce the impact of this limitation, besides working directly with 3D features can completely surpass this problem but at the expense of higher computational complexity. Models with lower supervision levels were identified to overcome some of the issues related to 3D pose, particularly the scarcity of labelled datasets. Therefore, no method is yet capable of solving all the challenges associated with the reconstruction of the 3D pose. Due to the existing trade-off between complexity and performance, the best method depends on the application scenario. Therefore, further research is still required to develop an approach capable of quickly inferring a highly accurate 3D pose with bearable computation cost. To this goal, techniques such as active learning, methods that learn with a low level of supervision, the incorporation of temporal consistency, view selection, estimation of depth information and multi-modal approaches might be interesting strategies to keep in mind when developing a new methodology to solve this task.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"155 ","pages":"Article 105437"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markerless multi-view 3D human pose estimation: A survey\",\"authors\":\"Ana Filipa Rodrigues Nogueira ,&nbsp;Hélder P. Oliveira ,&nbsp;Luís F. Teixeira\",\"doi\":\"10.1016/j.imavis.2025.105437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D human pose estimation aims to reconstruct the human skeleton of all the individuals in a scene by detecting several body joints. The creation of accurate and efficient methods is required for several real-world applications including animation, human–robot interaction, surveillance systems or sports, among many others. However, several obstacles such as occlusions, random camera perspectives, or the scarcity of 3D labelled data, have been hampering the models’ performance and limiting their deployment in real-world scenarios. The higher availability of cameras has led researchers to explore multi-view solutions due to the advantage of being able to exploit different perspectives to reconstruct the pose.</div><div>Most existing reviews focus mainly on monocular 3D human pose estimation and a comprehensive survey only on multi-view approaches to determine the 3D pose has been missing since 2012. Thus, the goal of this survey is to fill that gap and present an overview of the methodologies related to 3D pose estimation in multi-view settings, understand what were the strategies found to address the various challenges and also, identify their limitations. According to the reviewed articles, it was possible to find that most methods are fully-supervised approaches based on geometric constraints. Nonetheless, most of the methods suffer from 2D pose mismatches, to which the incorporation of temporal consistency and depth information have been suggested to reduce the impact of this limitation, besides working directly with 3D features can completely surpass this problem but at the expense of higher computational complexity. Models with lower supervision levels were identified to overcome some of the issues related to 3D pose, particularly the scarcity of labelled datasets. Therefore, no method is yet capable of solving all the challenges associated with the reconstruction of the 3D pose. Due to the existing trade-off between complexity and performance, the best method depends on the application scenario. Therefore, further research is still required to develop an approach capable of quickly inferring a highly accurate 3D pose with bearable computation cost. To this goal, techniques such as active learning, methods that learn with a low level of supervision, the incorporation of temporal consistency, view selection, estimation of depth information and multi-modal approaches might be interesting strategies to keep in mind when developing a new methodology to solve this task.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"155 \",\"pages\":\"Article 105437\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885625000253\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000253","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Markerless multi-view 3D human pose estimation: A survey
3D human pose estimation aims to reconstruct the human skeleton of all the individuals in a scene by detecting several body joints. The creation of accurate and efficient methods is required for several real-world applications including animation, human–robot interaction, surveillance systems or sports, among many others. However, several obstacles such as occlusions, random camera perspectives, or the scarcity of 3D labelled data, have been hampering the models’ performance and limiting their deployment in real-world scenarios. The higher availability of cameras has led researchers to explore multi-view solutions due to the advantage of being able to exploit different perspectives to reconstruct the pose.
Most existing reviews focus mainly on monocular 3D human pose estimation and a comprehensive survey only on multi-view approaches to determine the 3D pose has been missing since 2012. Thus, the goal of this survey is to fill that gap and present an overview of the methodologies related to 3D pose estimation in multi-view settings, understand what were the strategies found to address the various challenges and also, identify their limitations. According to the reviewed articles, it was possible to find that most methods are fully-supervised approaches based on geometric constraints. Nonetheless, most of the methods suffer from 2D pose mismatches, to which the incorporation of temporal consistency and depth information have been suggested to reduce the impact of this limitation, besides working directly with 3D features can completely surpass this problem but at the expense of higher computational complexity. Models with lower supervision levels were identified to overcome some of the issues related to 3D pose, particularly the scarcity of labelled datasets. Therefore, no method is yet capable of solving all the challenges associated with the reconstruction of the 3D pose. Due to the existing trade-off between complexity and performance, the best method depends on the application scenario. Therefore, further research is still required to develop an approach capable of quickly inferring a highly accurate 3D pose with bearable computation cost. To this goal, techniques such as active learning, methods that learn with a low level of supervision, the incorporation of temporal consistency, view selection, estimation of depth information and multi-modal approaches might be interesting strategies to keep in mind when developing a new methodology to solve this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
An edge-aware high-resolution framework for camouflaged object detection MUNet: A lightweight Mamba-based Under-Display Camera restoration network Dense small target detection algorithm for UAV aerial imagery Deep learning for brain tumor segmentation in multimodal MRI images: A review of methods and advances DAN: Distortion-aware Network for fisheye image rectification using graph reasoning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1