Xier Pan , Peng Xian , Yushu Li , Xiao Zhao , Jiaxin Zhang , Yangjie Song , Yunrong Nan , Shuting Ni , Kaili Hu
{"title":"趋化驱动混合脂质体恢复肠道稳态,实现结肠炎靶向治疗","authors":"Xier Pan , Peng Xian , Yushu Li , Xiao Zhao , Jiaxin Zhang , Yangjie Song , Yunrong Nan , Shuting Ni , Kaili Hu","doi":"10.1016/j.jconrel.2025.02.036","DOIUrl":null,"url":null,"abstract":"<div><div>Inflammatory bowel disease (IBD) is closely linked to the dysregulation of intestinal homeostasis, accompanied by intestinal epithelial barrier destruction, dysbiosis of gut microbiota, subsequent inflammatory factor infiltration, and excessive oxidative stress. Conventional therapeutics focus on suppressing inflammation and often suffer from metabolic instability as well as limited targeting, thereby leading to suboptimal remission rates and severe side effects. Here, we designed bacterial outer membrane vesicle (OMV, from <em>Stenotrophomonas maltophilia</em>)-fused and borneol-modified liposomes (BO/OMV-lipo@LU) for targeted delivery of luteolin to recover intestinal homeostasis by alleviating inflammation and modulating dysregulated intestinal epithelial barrier, redox balance, and gut microbiota in IBD. In a Caco-2/HT29-MTX monolayer model, the OMV and borneol-bifunctionalized liposomes enhanced the uptake efficiency of unfunctionalized liposomes with a 2-fold increase. Owing to the chemotaxis-driven colon-targeting ability of OMVs and the ability of borneol to promote intestinal epithelial uptake, the hybrid liposomes successfully targeted the inflamed colon. In a colitis mouse model, BO/OMV-lipo@LU exhibited enhanced efficacy following oral administration. The BO/OMV-lipo@LU treatment increased the colon length and body weights of mice suffering colitis by 40 % and 15 %, respectively, with values comparable to the healthy control group. Notably, BO/OMV-lipo@LU alleviated proinflammatory markers, modulated redox balance, and restored the intestinal epithelial barrier. In addition, the formulation increased the abundance of beneficial microbiota while decreasing the abundance of harmful microbiota. These results demonstrated that this biomimetic nanoplatform could be exploited as a safe and effective gut-targeted delivery system in IBD treatment.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"380 ","pages":"Pages 829-845"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemotaxis-driven hybrid liposomes recover intestinal homeostasis for targeted colitis therapy\",\"authors\":\"Xier Pan , Peng Xian , Yushu Li , Xiao Zhao , Jiaxin Zhang , Yangjie Song , Yunrong Nan , Shuting Ni , Kaili Hu\",\"doi\":\"10.1016/j.jconrel.2025.02.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inflammatory bowel disease (IBD) is closely linked to the dysregulation of intestinal homeostasis, accompanied by intestinal epithelial barrier destruction, dysbiosis of gut microbiota, subsequent inflammatory factor infiltration, and excessive oxidative stress. Conventional therapeutics focus on suppressing inflammation and often suffer from metabolic instability as well as limited targeting, thereby leading to suboptimal remission rates and severe side effects. Here, we designed bacterial outer membrane vesicle (OMV, from <em>Stenotrophomonas maltophilia</em>)-fused and borneol-modified liposomes (BO/OMV-lipo@LU) for targeted delivery of luteolin to recover intestinal homeostasis by alleviating inflammation and modulating dysregulated intestinal epithelial barrier, redox balance, and gut microbiota in IBD. In a Caco-2/HT29-MTX monolayer model, the OMV and borneol-bifunctionalized liposomes enhanced the uptake efficiency of unfunctionalized liposomes with a 2-fold increase. Owing to the chemotaxis-driven colon-targeting ability of OMVs and the ability of borneol to promote intestinal epithelial uptake, the hybrid liposomes successfully targeted the inflamed colon. In a colitis mouse model, BO/OMV-lipo@LU exhibited enhanced efficacy following oral administration. The BO/OMV-lipo@LU treatment increased the colon length and body weights of mice suffering colitis by 40 % and 15 %, respectively, with values comparable to the healthy control group. Notably, BO/OMV-lipo@LU alleviated proinflammatory markers, modulated redox balance, and restored the intestinal epithelial barrier. In addition, the formulation increased the abundance of beneficial microbiota while decreasing the abundance of harmful microbiota. These results demonstrated that this biomimetic nanoplatform could be exploited as a safe and effective gut-targeted delivery system in IBD treatment.</div></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"380 \",\"pages\":\"Pages 829-845\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016836592500149X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016836592500149X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemotaxis-driven hybrid liposomes recover intestinal homeostasis for targeted colitis therapy
Inflammatory bowel disease (IBD) is closely linked to the dysregulation of intestinal homeostasis, accompanied by intestinal epithelial barrier destruction, dysbiosis of gut microbiota, subsequent inflammatory factor infiltration, and excessive oxidative stress. Conventional therapeutics focus on suppressing inflammation and often suffer from metabolic instability as well as limited targeting, thereby leading to suboptimal remission rates and severe side effects. Here, we designed bacterial outer membrane vesicle (OMV, from Stenotrophomonas maltophilia)-fused and borneol-modified liposomes (BO/OMV-lipo@LU) for targeted delivery of luteolin to recover intestinal homeostasis by alleviating inflammation and modulating dysregulated intestinal epithelial barrier, redox balance, and gut microbiota in IBD. In a Caco-2/HT29-MTX monolayer model, the OMV and borneol-bifunctionalized liposomes enhanced the uptake efficiency of unfunctionalized liposomes with a 2-fold increase. Owing to the chemotaxis-driven colon-targeting ability of OMVs and the ability of borneol to promote intestinal epithelial uptake, the hybrid liposomes successfully targeted the inflamed colon. In a colitis mouse model, BO/OMV-lipo@LU exhibited enhanced efficacy following oral administration. The BO/OMV-lipo@LU treatment increased the colon length and body weights of mice suffering colitis by 40 % and 15 %, respectively, with values comparable to the healthy control group. Notably, BO/OMV-lipo@LU alleviated proinflammatory markers, modulated redox balance, and restored the intestinal epithelial barrier. In addition, the formulation increased the abundance of beneficial microbiota while decreasing the abundance of harmful microbiota. These results demonstrated that this biomimetic nanoplatform could be exploited as a safe and effective gut-targeted delivery system in IBD treatment.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.