Ramon Ramos de Paula , Joslaine Jacumazo , Natália Mello da Silva , Rilton Alves de Freitas , Luana Carolina Bosmuler Züge , Agnes de Paula Scheer
{"title":"酪乳粉对油水乳状液的稳定机制","authors":"Ramon Ramos de Paula , Joslaine Jacumazo , Natália Mello da Silva , Rilton Alves de Freitas , Luana Carolina Bosmuler Züge , Agnes de Paula Scheer","doi":"10.1016/j.jfoodeng.2025.112513","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the use of buttermilk powder to stabilize oil-in-water emulsions, focusing on casein as the stabilizer, the formation of Pickering particles at the oil-water interface, and the impact of heating on the size of stabilizing proteins. Emulsions were prepared with buttermilk powder dispersions, both before and after heating, and with isolated micellar casein powder. Analyses included surface characteristics, particle size, zeta potential, three-phase contact angle, rheological behavior, and macro and microscopic evaluations. The results showed that casein significantly reduces interfacial tension, playing a crucial role in emulsion stability. No significant increase in particle size was observed after heating, and zeta potential values remained constant (−25.2 mV for buttermilk and −23.2 mV for heated buttermilk), suggesting that heating does not affect particle charge. Stability was confirmed by the creaming index (CI) after seven days, with emulsions containing 5% buttermilk showing a CI of 7.62%, while emulsions with 1.28% micellar casein showed a CI of 8.61%, with no significant differences. Rheological analysis revealed a pseudoplastic behavior and an increase in the elastic modulus (G′) with stabilizer concentration. Microscopic analysis highlighted the importance of stabilizer concentration and demonstrated that the Pickering stabilization process is essential for the metastability of emulsions.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"394 ","pages":"Article 112513"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization mechanism of oil and water emulsions by powdered buttermilk\",\"authors\":\"Ramon Ramos de Paula , Joslaine Jacumazo , Natália Mello da Silva , Rilton Alves de Freitas , Luana Carolina Bosmuler Züge , Agnes de Paula Scheer\",\"doi\":\"10.1016/j.jfoodeng.2025.112513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the use of buttermilk powder to stabilize oil-in-water emulsions, focusing on casein as the stabilizer, the formation of Pickering particles at the oil-water interface, and the impact of heating on the size of stabilizing proteins. Emulsions were prepared with buttermilk powder dispersions, both before and after heating, and with isolated micellar casein powder. Analyses included surface characteristics, particle size, zeta potential, three-phase contact angle, rheological behavior, and macro and microscopic evaluations. The results showed that casein significantly reduces interfacial tension, playing a crucial role in emulsion stability. No significant increase in particle size was observed after heating, and zeta potential values remained constant (−25.2 mV for buttermilk and −23.2 mV for heated buttermilk), suggesting that heating does not affect particle charge. Stability was confirmed by the creaming index (CI) after seven days, with emulsions containing 5% buttermilk showing a CI of 7.62%, while emulsions with 1.28% micellar casein showed a CI of 8.61%, with no significant differences. Rheological analysis revealed a pseudoplastic behavior and an increase in the elastic modulus (G′) with stabilizer concentration. Microscopic analysis highlighted the importance of stabilizer concentration and demonstrated that the Pickering stabilization process is essential for the metastability of emulsions.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"394 \",\"pages\":\"Article 112513\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877425000482\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425000482","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Stabilization mechanism of oil and water emulsions by powdered buttermilk
This study investigates the use of buttermilk powder to stabilize oil-in-water emulsions, focusing on casein as the stabilizer, the formation of Pickering particles at the oil-water interface, and the impact of heating on the size of stabilizing proteins. Emulsions were prepared with buttermilk powder dispersions, both before and after heating, and with isolated micellar casein powder. Analyses included surface characteristics, particle size, zeta potential, three-phase contact angle, rheological behavior, and macro and microscopic evaluations. The results showed that casein significantly reduces interfacial tension, playing a crucial role in emulsion stability. No significant increase in particle size was observed after heating, and zeta potential values remained constant (−25.2 mV for buttermilk and −23.2 mV for heated buttermilk), suggesting that heating does not affect particle charge. Stability was confirmed by the creaming index (CI) after seven days, with emulsions containing 5% buttermilk showing a CI of 7.62%, while emulsions with 1.28% micellar casein showed a CI of 8.61%, with no significant differences. Rheological analysis revealed a pseudoplastic behavior and an increase in the elastic modulus (G′) with stabilizer concentration. Microscopic analysis highlighted the importance of stabilizer concentration and demonstrated that the Pickering stabilization process is essential for the metastability of emulsions.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.