宫颈淋巴结免疫景观的改变揭示了多发性硬化症中 Epstein-Barr 病毒的特征

IF 17.6 1区 医学 Q1 IMMUNOLOGY Science Immunology Pub Date : 2025-02-21
Joona Sarkkinen, Dawit A. Yohannes, Nea Kreivi, Pia Dürnsteiner, Alexandra Elsakova, Jani Huuhtanen, Kirsten Nowlan, Goran Kurdo, Riikka Linden, Mika Saarela, Pentti J. Tienari, Eliisa Kekäläinen, Maria Perdomo, Sini M. Laakso
{"title":"宫颈淋巴结免疫景观的改变揭示了多发性硬化症中 Epstein-Barr 病毒的特征","authors":"Joona Sarkkinen,&nbsp;Dawit A. Yohannes,&nbsp;Nea Kreivi,&nbsp;Pia Dürnsteiner,&nbsp;Alexandra Elsakova,&nbsp;Jani Huuhtanen,&nbsp;Kirsten Nowlan,&nbsp;Goran Kurdo,&nbsp;Riikka Linden,&nbsp;Mika Saarela,&nbsp;Pentti J. Tienari,&nbsp;Eliisa Kekäläinen,&nbsp;Maria Perdomo,&nbsp;Sini M. Laakso","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and Epstein-Barr virus (EBV) infection is a prerequisite for developing the disease. However, the pathogenic mechanisms that lead to MS remain to be determined. Here, we characterized the immune landscape of deep cervical lymph nodes (dcLNs) in newly diagnosed untreated patients with MS (pwMS) using fine-needle aspirations. By combining single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing, we observed increased memory B cells and reduced germinal center B cells with decreased clonality in pwMS. Double-negative memory B cells were increased in pwMS that transcriptionally resembled B cells with a lytic EBV infection. Moreover, EBV-targeting memory CD8 T cells were detected in a subset of pwMS. We also detected increased EBV DNA in dcLNs and elevated viral loads in patient saliva. These findings suggest that EBV-driven B cell dysregulation is a critical mechanism in MS pathogenesis.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 104","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altered immune landscape of cervical lymph nodes reveals Epstein-Barr virus signature in multiple sclerosis\",\"authors\":\"Joona Sarkkinen,&nbsp;Dawit A. Yohannes,&nbsp;Nea Kreivi,&nbsp;Pia Dürnsteiner,&nbsp;Alexandra Elsakova,&nbsp;Jani Huuhtanen,&nbsp;Kirsten Nowlan,&nbsp;Goran Kurdo,&nbsp;Riikka Linden,&nbsp;Mika Saarela,&nbsp;Pentti J. Tienari,&nbsp;Eliisa Kekäläinen,&nbsp;Maria Perdomo,&nbsp;Sini M. Laakso\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and Epstein-Barr virus (EBV) infection is a prerequisite for developing the disease. However, the pathogenic mechanisms that lead to MS remain to be determined. Here, we characterized the immune landscape of deep cervical lymph nodes (dcLNs) in newly diagnosed untreated patients with MS (pwMS) using fine-needle aspirations. By combining single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing, we observed increased memory B cells and reduced germinal center B cells with decreased clonality in pwMS. Double-negative memory B cells were increased in pwMS that transcriptionally resembled B cells with a lytic EBV infection. Moreover, EBV-targeting memory CD8 T cells were detected in a subset of pwMS. We also detected increased EBV DNA in dcLNs and elevated viral loads in patient saliva. These findings suggest that EBV-driven B cell dysregulation is a critical mechanism in MS pathogenesis.</div>\",\"PeriodicalId\":21734,\"journal\":{\"name\":\"Science Immunology\",\"volume\":\"10 104\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciimmunol.adl3604\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.adl3604","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Altered immune landscape of cervical lymph nodes reveals Epstein-Barr virus signature in multiple sclerosis
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and Epstein-Barr virus (EBV) infection is a prerequisite for developing the disease. However, the pathogenic mechanisms that lead to MS remain to be determined. Here, we characterized the immune landscape of deep cervical lymph nodes (dcLNs) in newly diagnosed untreated patients with MS (pwMS) using fine-needle aspirations. By combining single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing, we observed increased memory B cells and reduced germinal center B cells with decreased clonality in pwMS. Double-negative memory B cells were increased in pwMS that transcriptionally resembled B cells with a lytic EBV infection. Moreover, EBV-targeting memory CD8 T cells were detected in a subset of pwMS. We also detected increased EBV DNA in dcLNs and elevated viral loads in patient saliva. These findings suggest that EBV-driven B cell dysregulation is a critical mechanism in MS pathogenesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Immunology
Science Immunology Immunology and Microbiology-Immunology
CiteScore
32.90
自引率
2.00%
发文量
183
期刊介绍: Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.
期刊最新文献
DNMT1 inhibition reprograms T cells to NK-like cells with potent antitumor activity GM-CSF–mediated epithelial-immune cell cross-talk orchestrates pulmonary immunity to Aspergillus fumigatus Dysregulation of γδ intraepithelial lymphocytes precedes Crohn’s disease–like ileitis ATF4 drives regulatory T cell functional specification in homeostasis and obesity QRICH1 mediates an intracellular checkpoint for CD8 + T cell activation via the CARD11 signalosome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1