利用放射学报告和图像改善重症监护室死亡率预测的实证研究。

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2025-02-20 eCollection Date: 2025-02-01 DOI:10.1093/jamiaopen/ooae137
Mingquan Lin, Song Wang, Ying Ding, Lihui Zhao, Fei Wang, Yifan Peng
{"title":"利用放射学报告和图像改善重症监护室死亡率预测的实证研究。","authors":"Mingquan Lin, Song Wang, Ying Ding, Lihui Zhao, Fei Wang, Yifan Peng","doi":"10.1093/jamiaopen/ooae137","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narratives and images.</p><p><strong>Materials and methods: </strong>In this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4) chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset.</p><p><strong>Results: </strong>Our model achieves an average C-index of 0.7829 (95% CI, 0.7620-0.8038), surpassing the baseline using only SAPS-II features, which had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels (2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement).</p><p><strong>Discussion and conclusion: </strong>The deep learning model demonstrated superior performance to traditional machine learning methods under the same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning models to enhance the accuracy of ICU mortality prediction.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 1","pages":"ooae137"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841685/pdf/","citationCount":"0","resultStr":"{\"title\":\"An empirical study of using radiology reports and images to improve intensive care unit mortality prediction.\",\"authors\":\"Mingquan Lin, Song Wang, Ying Ding, Lihui Zhao, Fei Wang, Yifan Peng\",\"doi\":\"10.1093/jamiaopen/ooae137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narratives and images.</p><p><strong>Materials and methods: </strong>In this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4) chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset.</p><p><strong>Results: </strong>Our model achieves an average C-index of 0.7829 (95% CI, 0.7620-0.8038), surpassing the baseline using only SAPS-II features, which had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels (2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement).</p><p><strong>Discussion and conclusion: </strong>The deep learning model demonstrated superior performance to traditional machine learning methods under the same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning models to enhance the accuracy of ICU mortality prediction.</p>\",\"PeriodicalId\":36278,\"journal\":{\"name\":\"JAMIA Open\",\"volume\":\"8 1\",\"pages\":\"ooae137\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAMIA Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jamiaopen/ooae137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:重症监护室(ICU)预测性评分系统对预测患者预后,尤其是死亡率至关重要。传统的评分系统主要依赖电子健康记录中的结构化临床数据,这可能会忽略叙述和图像中的重要临床信息:在这项工作中,我们建立了一个基于深度学习的生存预测模型,利用多模态数据进行 ICU 死亡率预测。我们研究了四组特征:(1)简化急性生理学评分(SAPS)II 的生理测量;(2)放射科医生预先定义的常见胸部疾病;(3)基于转换器文本表示的双向编码器表示;以及(4)胸部 X 光图像特征。我们使用重症监护医学信息市场 IV 数据集对该模型进行了评估:结果:我们的模型平均 C 指数为 0.7829(95% CI,0.7620-0.8038),超过了仅使用 SAPS-II 特征的基线,后者的 C 指数为 0.7470(95% CI:0.7263-0.7676)。消融研究进一步证明了结合预定义标签(提高 2.00%)、文本特征(提高 2.44%)和图像特征(提高 2.82%)所做的贡献:在相同的特征融合设置下,深度学习模型在 ICU 死亡率预测方面的表现优于传统的机器学习方法。这项研究凸显了将多模态数据整合到深度学习模型中以提高 ICU 死亡率预测准确性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An empirical study of using radiology reports and images to improve intensive care unit mortality prediction.

Objectives: The predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narratives and images.

Materials and methods: In this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4) chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset.

Results: Our model achieves an average C-index of 0.7829 (95% CI, 0.7620-0.8038), surpassing the baseline using only SAPS-II features, which had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels (2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement).

Discussion and conclusion: The deep learning model demonstrated superior performance to traditional machine learning methods under the same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning models to enhance the accuracy of ICU mortality prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
Aligning prediction models with clinical information needs: infant sepsis case study. Semantic enrichment of Pomeranian health study data using LOINC and WHO-FIC terminology mapping principles. Exploring beyond diagnoses in electronic health records to improve discovery: a review of the phenome-wide association study. Toward digital caregiving network interventions for children with medical complexity living in socioeconomically disadvantaged neighborhoods. Transforming appeal decisions: machine learning triage for hospital admission denials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1