通过点对点识别和活细胞中的诱导自组装对蛋白质三聚体进行程序化检测的 DNA 四面体质量标记探针组

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-02-22 DOI:10.1021/acs.analchem.4c05947
Jiapu Li, Xiaoxu Li, Yunjing Wang, Jianhua Zhu, Yun Chen
{"title":"通过点对点识别和活细胞中的诱导自组装对蛋白质三聚体进行程序化检测的 DNA 四面体质量标记探针组","authors":"Jiapu Li, Xiaoxu Li, Yunjing Wang, Jianhua Zhu, Yun Chen","doi":"10.1021/acs.analchem.4c05947","DOIUrl":null,"url":null,"abstract":"Multimeric proteins normally perform different biological functions from their monomer components. Thus, precise recognition and quantitative detection of multimeric proteins can benefit a better understanding of complex biological processes and their roles in disease diagnosis and treatment. The challenge herein is to distinguish the multimeric proteins containing identical monomer components and recognize all the monomers in a multimeric protein on spatial scales. This situation is likely to become more significant for homomultimeric proteins. In this study, a DNA polyhedron mass-tagged probe set strategy was developed for the programmed detection of multimeric proteins in living cells. The probe set comprised recognition and displacement probes, a DNA polyhedron probe, and a mass-tagged probe. After point-to-point recognition of each monomer in the target protein complex by recognition and displacement probes, the DNA polyhedron probe could integrate the information on all the protein monomers by carrying out induced self-assembly via a cascaded toehold-mediated strand-displacement (TMSD) reaction. Afterward, the mass-tagged probe collected the integrated information, and the mass tag in the probe was released by ultraviolet (UV) irradiation and detected by mass spectrometry (MS). Using the tmTNF-α homotrimer as an example, its expression levels in different breast cancer cell lines were ultimately determined using this probe set containing a DNA tetrahedron probe. This study is among the first to quantitatively detect multimeric proteins in living cells. Using a similar strategy, more DNA polyhedron mass-tagged probe sets can be developed for the detection of higher-order multimeric proteins.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"30 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA Tetrahedron Mass-Tagged Probe Set for the Programmed Detection of Protein Trimers by Point-to-Point Recognition and Induced Self-Assembly in Living Cells\",\"authors\":\"Jiapu Li, Xiaoxu Li, Yunjing Wang, Jianhua Zhu, Yun Chen\",\"doi\":\"10.1021/acs.analchem.4c05947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimeric proteins normally perform different biological functions from their monomer components. Thus, precise recognition and quantitative detection of multimeric proteins can benefit a better understanding of complex biological processes and their roles in disease diagnosis and treatment. The challenge herein is to distinguish the multimeric proteins containing identical monomer components and recognize all the monomers in a multimeric protein on spatial scales. This situation is likely to become more significant for homomultimeric proteins. In this study, a DNA polyhedron mass-tagged probe set strategy was developed for the programmed detection of multimeric proteins in living cells. The probe set comprised recognition and displacement probes, a DNA polyhedron probe, and a mass-tagged probe. After point-to-point recognition of each monomer in the target protein complex by recognition and displacement probes, the DNA polyhedron probe could integrate the information on all the protein monomers by carrying out induced self-assembly via a cascaded toehold-mediated strand-displacement (TMSD) reaction. Afterward, the mass-tagged probe collected the integrated information, and the mass tag in the probe was released by ultraviolet (UV) irradiation and detected by mass spectrometry (MS). Using the tmTNF-α homotrimer as an example, its expression levels in different breast cancer cell lines were ultimately determined using this probe set containing a DNA tetrahedron probe. This study is among the first to quantitatively detect multimeric proteins in living cells. Using a similar strategy, more DNA polyhedron mass-tagged probe sets can be developed for the detection of higher-order multimeric proteins.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05947\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05947","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA Tetrahedron Mass-Tagged Probe Set for the Programmed Detection of Protein Trimers by Point-to-Point Recognition and Induced Self-Assembly in Living Cells
Multimeric proteins normally perform different biological functions from their monomer components. Thus, precise recognition and quantitative detection of multimeric proteins can benefit a better understanding of complex biological processes and their roles in disease diagnosis and treatment. The challenge herein is to distinguish the multimeric proteins containing identical monomer components and recognize all the monomers in a multimeric protein on spatial scales. This situation is likely to become more significant for homomultimeric proteins. In this study, a DNA polyhedron mass-tagged probe set strategy was developed for the programmed detection of multimeric proteins in living cells. The probe set comprised recognition and displacement probes, a DNA polyhedron probe, and a mass-tagged probe. After point-to-point recognition of each monomer in the target protein complex by recognition and displacement probes, the DNA polyhedron probe could integrate the information on all the protein monomers by carrying out induced self-assembly via a cascaded toehold-mediated strand-displacement (TMSD) reaction. Afterward, the mass-tagged probe collected the integrated information, and the mass tag in the probe was released by ultraviolet (UV) irradiation and detected by mass spectrometry (MS). Using the tmTNF-α homotrimer as an example, its expression levels in different breast cancer cell lines were ultimately determined using this probe set containing a DNA tetrahedron probe. This study is among the first to quantitatively detect multimeric proteins in living cells. Using a similar strategy, more DNA polyhedron mass-tagged probe sets can be developed for the detection of higher-order multimeric proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Neural Network–Enhanced Electrochemical/SERS Dual-Mode Microfluidic Platform for Accurate Detection of Interleukin-6 in Diabetic Wound Exudates DNA Tetrahedron Mass-Tagged Probe Set for the Programmed Detection of Protein Trimers by Point-to-Point Recognition and Induced Self-Assembly in Living Cells Quantitative Characterization of Organosilane Monolayers by Oxidative Dissociation of Monolayer Molecules Self-Localized Plasmonic Nanocavity Strategy for the Glycosylation Detection of Glioblastoma Extracellular Vesicles Feature Wavelengths for Quantifying Methane Concentrations Using Shortwave Infrared Hyperspectral Imaging: A Controlled Condition Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1