{"title":"A Multi-objective transfer learning framework for time series forecasting with Concept Echo State Networks","authors":"Yingqin Zhu , Wen Yu , Xiaoou Li","doi":"10.1016/j.neunet.2025.107272","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel transfer learning framework for time series forecasting that uses Concept Echo State Network (CESN) and a multi-objective optimization strategy. Our approach addresses the challenges of feature extraction and knowledge transfer in heterogeneous data environments. By optimizing CESN for each data source, we extract targeted features that capture the unique characteristics of individual datasets. Additionally, our multi-network architecture enables effective knowledge sharing among different ESNs, leading to improved forecasting performance. To further enhance efficiency, CESN reduces the need for extensive hyperparameter tuning by focusing on optimizing only the concept matrix and output weights. Our proposed framework offers a promising solution for forecasting problems where data is diverse, limited, or missing.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107272"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001510","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Multi-objective transfer learning framework for time series forecasting with Concept Echo State Networks
This paper introduces a novel transfer learning framework for time series forecasting that uses Concept Echo State Network (CESN) and a multi-objective optimization strategy. Our approach addresses the challenges of feature extraction and knowledge transfer in heterogeneous data environments. By optimizing CESN for each data source, we extract targeted features that capture the unique characteristics of individual datasets. Additionally, our multi-network architecture enables effective knowledge sharing among different ESNs, leading to improved forecasting performance. To further enhance efficiency, CESN reduces the need for extensive hyperparameter tuning by focusing on optimizing only the concept matrix and output weights. Our proposed framework offers a promising solution for forecasting problems where data is diverse, limited, or missing.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.