IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-02-20 DOI:10.1016/j.neunet.2025.107272
Yingqin Zhu , Wen Yu , Xiaoou Li
{"title":"A Multi-objective transfer learning framework for time series forecasting with Concept Echo State Networks","authors":"Yingqin Zhu ,&nbsp;Wen Yu ,&nbsp;Xiaoou Li","doi":"10.1016/j.neunet.2025.107272","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel transfer learning framework for time series forecasting that uses Concept Echo State Network (CESN) and a multi-objective optimization strategy. Our approach addresses the challenges of feature extraction and knowledge transfer in heterogeneous data environments. By optimizing CESN for each data source, we extract targeted features that capture the unique characteristics of individual datasets. Additionally, our multi-network architecture enables effective knowledge sharing among different ESNs, leading to improved forecasting performance. To further enhance efficiency, CESN reduces the need for extensive hyperparameter tuning by focusing on optimizing only the concept matrix and output weights. Our proposed framework offers a promising solution for forecasting problems where data is diverse, limited, or missing.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107272"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001510","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于时间序列预测的新型迁移学习框架,该框架使用了概念回声状态网络(CESN)和多目标优化策略。我们的方法解决了异构数据环境中特征提取和知识转移的难题。通过对每个数据源的 CESN 进行优化,我们可以提取出有针对性的特征,从而捕捉到各个数据集的独特特征。此外,我们的多网络架构还能在不同的 ESN 之间实现有效的知识共享,从而提高预测性能。为了进一步提高效率,CESN 只需对概念矩阵和输出权重进行优化,从而减少了对大量超参数调整的需求。我们提出的框架为数据多样、有限或缺失的预测问题提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-objective transfer learning framework for time series forecasting with Concept Echo State Networks
This paper introduces a novel transfer learning framework for time series forecasting that uses Concept Echo State Network (CESN) and a multi-objective optimization strategy. Our approach addresses the challenges of feature extraction and knowledge transfer in heterogeneous data environments. By optimizing CESN for each data source, we extract targeted features that capture the unique characteristics of individual datasets. Additionally, our multi-network architecture enables effective knowledge sharing among different ESNs, leading to improved forecasting performance. To further enhance efficiency, CESN reduces the need for extensive hyperparameter tuning by focusing on optimizing only the concept matrix and output weights. Our proposed framework offers a promising solution for forecasting problems where data is diverse, limited, or missing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Identity Model Transformation for boosting performance and efficiency in object detection network. Enhancing Recommender Systems through Imputation and Social-Aware Graph Convolutional Neural Network. Multi-level feature fusion networks for smoke recognition in remote sensing imagery. Synergistic learning with multi-task DeepONet for efficient PDE problem solving. ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1