低盐条件影响了具有重要商业价值的高纬度海藻物种的早期生命阶段。

IF 2.8 3区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Journal of Phycology Pub Date : 2025-02-22 DOI:10.1111/jpy.70003
Veronica Farrugia Drakard, Jordan A Hollarsmith, Michael S Stekoll
{"title":"低盐条件影响了具有重要商业价值的高纬度海藻物种的早期生命阶段。","authors":"Veronica Farrugia Drakard, Jordan A Hollarsmith, Michael S Stekoll","doi":"10.1111/jpy.70003","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines how hyposaline stress impacts the early life-stages of commercial kelp species from Alaska. Kelp are important species both ecologically and commercially and are likely to experience significant impacts due to ongoing climate change. Climate-driven glacial melt and changing rainfall patterns globally will release large amounts of freshwater into coastal systems in the coming decades. Both bull kelp (Nereocystis luetkeana) and ribbon kelp (Alaria marginata) are high-latitude species of commercial and ecological importance. These species inhabit very different environments: While bull kelp is a subtidal, canopy-forming species, ribbon kelp is an intertidal subcanopy species. In this study, fertile specimens of both were collected from various locations in Alaska and induced to release spores. These were cultivated for 30 days in four salinity treatments: 32, 25, 20, and 13. Both species grew and produced gametophytes in salinities down to a salinity of 20, although A. marginata seems to be better adapted to hyposaline conditions. Below a salinity of 20, we observed several impacts on progression between life stages. The response of gametophyte growth and the production of eggs and sporophytes to different salinities varied both by species and by population. Gametophytes of N. luetkeana grew fastest at a salinity of 32, while those of A. marginata grew fastest between 20 and 25 (Juneau) or 25 and 32 (Kodiak). In terms of egg production, A. marginata displayed significant population-level variation. Juneau individuals produced the same number of eggs regardless of salinity. Kodiak individuals produced fewer eggs in hyposaline conditions. The production of sporophytes from eggs for both species from all locations was unaffected by salinities above 20; however, no sporophytes at all were produced at 13. All of this has implications for commercial production in the hatchery phase, as hyposaline stress may induce N. luetkeana to produce sporophytes faster than in full oceanic salinity. In terms of wild populations, the observed population-level and species-level differences in adaptation to hyposaline conditions suggest that decreased salinities in coastal areas are likely to impact the distribution of these two species over the coming decades.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyposaline conditions impact the early life-stages of commercially important high-latitude kelp species.\",\"authors\":\"Veronica Farrugia Drakard, Jordan A Hollarsmith, Michael S Stekoll\",\"doi\":\"10.1111/jpy.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examines how hyposaline stress impacts the early life-stages of commercial kelp species from Alaska. Kelp are important species both ecologically and commercially and are likely to experience significant impacts due to ongoing climate change. Climate-driven glacial melt and changing rainfall patterns globally will release large amounts of freshwater into coastal systems in the coming decades. Both bull kelp (Nereocystis luetkeana) and ribbon kelp (Alaria marginata) are high-latitude species of commercial and ecological importance. These species inhabit very different environments: While bull kelp is a subtidal, canopy-forming species, ribbon kelp is an intertidal subcanopy species. In this study, fertile specimens of both were collected from various locations in Alaska and induced to release spores. These were cultivated for 30 days in four salinity treatments: 32, 25, 20, and 13. Both species grew and produced gametophytes in salinities down to a salinity of 20, although A. marginata seems to be better adapted to hyposaline conditions. Below a salinity of 20, we observed several impacts on progression between life stages. The response of gametophyte growth and the production of eggs and sporophytes to different salinities varied both by species and by population. Gametophytes of N. luetkeana grew fastest at a salinity of 32, while those of A. marginata grew fastest between 20 and 25 (Juneau) or 25 and 32 (Kodiak). In terms of egg production, A. marginata displayed significant population-level variation. Juneau individuals produced the same number of eggs regardless of salinity. Kodiak individuals produced fewer eggs in hyposaline conditions. The production of sporophytes from eggs for both species from all locations was unaffected by salinities above 20; however, no sporophytes at all were produced at 13. All of this has implications for commercial production in the hatchery phase, as hyposaline stress may induce N. luetkeana to produce sporophytes faster than in full oceanic salinity. In terms of wild populations, the observed population-level and species-level differences in adaptation to hyposaline conditions suggest that decreased salinities in coastal areas are likely to impact the distribution of these two species over the coming decades.</p>\",\"PeriodicalId\":16831,\"journal\":{\"name\":\"Journal of Phycology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jpy.70003\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.70003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyposaline conditions impact the early life-stages of commercially important high-latitude kelp species.

This study examines how hyposaline stress impacts the early life-stages of commercial kelp species from Alaska. Kelp are important species both ecologically and commercially and are likely to experience significant impacts due to ongoing climate change. Climate-driven glacial melt and changing rainfall patterns globally will release large amounts of freshwater into coastal systems in the coming decades. Both bull kelp (Nereocystis luetkeana) and ribbon kelp (Alaria marginata) are high-latitude species of commercial and ecological importance. These species inhabit very different environments: While bull kelp is a subtidal, canopy-forming species, ribbon kelp is an intertidal subcanopy species. In this study, fertile specimens of both were collected from various locations in Alaska and induced to release spores. These were cultivated for 30 days in four salinity treatments: 32, 25, 20, and 13. Both species grew and produced gametophytes in salinities down to a salinity of 20, although A. marginata seems to be better adapted to hyposaline conditions. Below a salinity of 20, we observed several impacts on progression between life stages. The response of gametophyte growth and the production of eggs and sporophytes to different salinities varied both by species and by population. Gametophytes of N. luetkeana grew fastest at a salinity of 32, while those of A. marginata grew fastest between 20 and 25 (Juneau) or 25 and 32 (Kodiak). In terms of egg production, A. marginata displayed significant population-level variation. Juneau individuals produced the same number of eggs regardless of salinity. Kodiak individuals produced fewer eggs in hyposaline conditions. The production of sporophytes from eggs for both species from all locations was unaffected by salinities above 20; however, no sporophytes at all were produced at 13. All of this has implications for commercial production in the hatchery phase, as hyposaline stress may induce N. luetkeana to produce sporophytes faster than in full oceanic salinity. In terms of wild populations, the observed population-level and species-level differences in adaptation to hyposaline conditions suggest that decreased salinities in coastal areas are likely to impact the distribution of these two species over the coming decades.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Phycology
Journal of Phycology 生物-海洋与淡水生物学
CiteScore
6.50
自引率
3.40%
发文量
69
审稿时长
2 months
期刊介绍: The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
期刊最新文献
Hyposaline conditions impact the early life-stages of commercially important high-latitude kelp species. Seasonality and interannual stability in the population genetic structure of Batrachospermum gelatinosum (Rhodophyta). Algal perspectives: The algal phyla. Three reference genomes for freshwater diatom ecology and evolution. Linking phenotypic variation to patterns of genetic isolation along a speciation continuum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1