IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Computer Architecture Letters Pub Date : 2025-02-06 DOI:10.1109/LCA.2025.3539371
Hyunwoo Nam;Jay Hwan Lee;Shinhyung Yang;Yeonsoo Kim;Jiun Jeong;Jeonggeun Kim;Bernd Burgstaller
{"title":"Comprehensive Design Space Exploration for Graph Neural Network Aggregation on GPUs","authors":"Hyunwoo Nam;Jay Hwan Lee;Shinhyung Yang;Yeonsoo Kim;Jiun Jeong;Jeonggeun Kim;Bernd Burgstaller","doi":"10.1109/LCA.2025.3539371","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) have become the state-of-the-art technology for extracting and predicting data representations on graphs. With increasing demand to accelerate GNN computations, the GPU has become the dominant platform for GNN training and inference. GNNs consist of a compute-bound combination phase and a memory-bound aggregation phase. The memory access patterns of the aggregation phase remain a major performance bottleneck on GPUs, despite recent microarchitectural enhancements. Although GNN characterizations have been conducted to investigate this bottleneck, they did not reveal the impact of architectural modifications. However, a comprehensive understanding of improvements from such modifications is imperative to devise GPU optimizations for the aggregation phase. In this letter, we explore the GPU design space for aggregation by assessing the performance improvement potential of a series of architectural modifications. We find that the low locality of aggregation deteriorates performance with increased thread-level parallelism, and a significant enhancement follows memory access optimizations, which remain effective even with software optimization. Our analysis provides insights for hardware optimizations to significantly improve GNN aggregation on GPUs.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"45-48"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10876606/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络(GNN)已成为提取和预测图上数据表示的最先进技术。随着加速 GNN 计算的需求不断增加,GPU 已成为 GNN 训练和推理的主流平台。GNN 由计算绑定的组合阶段和内存绑定的聚合阶段组成。尽管最近的微体系结构有所改进,但聚合阶段的内存访问模式仍然是 GPU 的主要性能瓶颈。虽然已经进行了 GNN 特性分析来研究这一瓶颈,但它们并未揭示架构修改的影响。然而,要为聚合阶段设计 GPU 优化方案,就必须全面了解此类修改带来的改进。在这封信中,我们通过评估一系列架构修改的性能改进潜力,探索了 GPU 的聚合设计空间。我们发现,随着线程级并行性的提高,聚合的低局部性会使性能下降,而内存访问优化后性能会显著提高,即使进行软件优化也依然有效。我们的分析为硬件优化提供了启示,可显著提高 GPU 上的 GNN 聚合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive Design Space Exploration for Graph Neural Network Aggregation on GPUs
Graph neural networks (GNNs) have become the state-of-the-art technology for extracting and predicting data representations on graphs. With increasing demand to accelerate GNN computations, the GPU has become the dominant platform for GNN training and inference. GNNs consist of a compute-bound combination phase and a memory-bound aggregation phase. The memory access patterns of the aggregation phase remain a major performance bottleneck on GPUs, despite recent microarchitectural enhancements. Although GNN characterizations have been conducted to investigate this bottleneck, they did not reveal the impact of architectural modifications. However, a comprehensive understanding of improvements from such modifications is imperative to devise GPU optimizations for the aggregation phase. In this letter, we explore the GPU design space for aggregation by assessing the performance improvement potential of a series of architectural modifications. We find that the low locality of aggregation deteriorates performance with increased thread-level parallelism, and a significant enhancement follows memory access optimizations, which remain effective even with software optimization. Our analysis provides insights for hardware optimizations to significantly improve GNN aggregation on GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
期刊最新文献
Optically Connected Multi-Stack HBM Modules for Large Language Model Training and Inference Comprehensive Design Space Exploration for Graph Neural Network Aggregation on GPUs Editorial: A Letter From the Editor-in-Chief of IEEE Computer Architecture Letters RoPIM: A Processing-in-Memory Architecture for Accelerating Rotary Positional Embedding in Transformer Models GPU-Centric Memory Tiering for LLM Serving With NVIDIA Grace Hopper Superchip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1