通过快速自放热和化学脱合金制备的多孔纳米栅格类cu掺杂co基材料作为高效的析氧催化剂

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY JOM Pub Date : 2024-12-31 DOI:10.1007/s11837-024-07081-5
Weijia Guo, Xuewei Xu, Chengyi Xu, Farid Akhtar, Xiaoping Cai, Peizhong Feng
{"title":"通过快速自放热和化学脱合金制备的多孔纳米栅格类cu掺杂co基材料作为高效的析氧催化剂","authors":"Weijia Guo,&nbsp;Xuewei Xu,&nbsp;Chengyi Xu,&nbsp;Farid Akhtar,&nbsp;Xiaoping Cai,&nbsp;Peizhong Feng","doi":"10.1007/s11837-024-07081-5","DOIUrl":null,"url":null,"abstract":"<div><p>The oxygen evolution reaction (OER) is known as a kinetics barrier in electrochemical water splitting. Developing stabilized non-precious metal-based catalysts is crucial for the wide application of electrolytic water splitting in oxygen production. Porous Co-based intermetallics function as promising non-noble metal catalysts for OER. Porous nanogrid-like Cu-doped Co-based materials (D-CAC) were prepared via the combination of rapid self-exothermic reactions and subsequent chemical dealloying. The Co-Al intermetallics possess high porosity and large specific surface area, which can promote mass transfer. On the other hand, proper metal doping is beneficial to adjust the absorption and desorption of oxygen-containing intermediate species. Accordingly, the D-CAC sample exhibited excellent OER activity with an overpotential of 370 mV@10 mA cm<sup>-1</sup> and a low Tafel slope of 52.7 mV dec<sup>-1</sup> in 1 M KOH. These findings offer a novel perspective on the efficient development of cobalt-based electrocatalysts for oxygen evolution.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 3","pages":"1466 - 1474"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous Nanogrid-Like Cu-Doped Co-Based Materials via Rapid Self-Exothermic and Chemical Dealloying as Efficient Catalysts for Oxygen Evolution\",\"authors\":\"Weijia Guo,&nbsp;Xuewei Xu,&nbsp;Chengyi Xu,&nbsp;Farid Akhtar,&nbsp;Xiaoping Cai,&nbsp;Peizhong Feng\",\"doi\":\"10.1007/s11837-024-07081-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The oxygen evolution reaction (OER) is known as a kinetics barrier in electrochemical water splitting. Developing stabilized non-precious metal-based catalysts is crucial for the wide application of electrolytic water splitting in oxygen production. Porous Co-based intermetallics function as promising non-noble metal catalysts for OER. Porous nanogrid-like Cu-doped Co-based materials (D-CAC) were prepared via the combination of rapid self-exothermic reactions and subsequent chemical dealloying. The Co-Al intermetallics possess high porosity and large specific surface area, which can promote mass transfer. On the other hand, proper metal doping is beneficial to adjust the absorption and desorption of oxygen-containing intermediate species. Accordingly, the D-CAC sample exhibited excellent OER activity with an overpotential of 370 mV@10 mA cm<sup>-1</sup> and a low Tafel slope of 52.7 mV dec<sup>-1</sup> in 1 M KOH. These findings offer a novel perspective on the efficient development of cobalt-based electrocatalysts for oxygen evolution.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"77 3\",\"pages\":\"1466 - 1474\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-024-07081-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-07081-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

析氧反应(OER)是电化学水分解过程中的动力学屏障。开发稳定的非贵金属基催化剂是电解水分解在制氧中的广泛应用的关键。多孔钴基金属间化合物是一种很有前途的非贵金属OER催化剂。采用快速自放热反应和随后的化学合金化相结合的方法制备了多孔纳米级cu掺杂co基材料(D-CAC)。Co-Al金属间化合物具有高孔隙率和大比表面积,有利于传质。另一方面,适当的金属掺杂有利于调节含氧中间体的吸附和解吸。因此,D-CAC样品表现出优异的OER活性,过电位为370 mV@10 mA cm-1,在1 M KOH下的Tafel斜率为52.7 mV dec-1。这些发现为高效开发钴基析氧电催化剂提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Porous Nanogrid-Like Cu-Doped Co-Based Materials via Rapid Self-Exothermic and Chemical Dealloying as Efficient Catalysts for Oxygen Evolution

The oxygen evolution reaction (OER) is known as a kinetics barrier in electrochemical water splitting. Developing stabilized non-precious metal-based catalysts is crucial for the wide application of electrolytic water splitting in oxygen production. Porous Co-based intermetallics function as promising non-noble metal catalysts for OER. Porous nanogrid-like Cu-doped Co-based materials (D-CAC) were prepared via the combination of rapid self-exothermic reactions and subsequent chemical dealloying. The Co-Al intermetallics possess high porosity and large specific surface area, which can promote mass transfer. On the other hand, proper metal doping is beneficial to adjust the absorption and desorption of oxygen-containing intermediate species. Accordingly, the D-CAC sample exhibited excellent OER activity with an overpotential of 370 mV@10 mA cm-1 and a low Tafel slope of 52.7 mV dec-1 in 1 M KOH. These findings offer a novel perspective on the efficient development of cobalt-based electrocatalysts for oxygen evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
期刊最新文献
TMS Meeting Headlines TMS Member News JOM Technical Topics AIME Oral History Collection Celebrates Prominent TMS Members 41 Years of Service: James J. Robinson Reflects on a Career with TMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1