Q2 Pharmacology, Toxicology and Pharmaceutics F1000Research Pub Date : 2025-02-07 eCollection Date: 2023-01-01 DOI:10.12688/f1000research.127142.2
Sejin Kim, Michal Kazmierski, Kevin Qu, Jacob Peoples, Minoru Nakano, Vishwesh Ramanathan, Joseph Marsilla, Mattea Welch, Amber Simpson, Benjamin Haibe-Kains
{"title":"Med-ImageTools: An open-source Python package for robust data processing pipelines and curating medical imaging data.","authors":"Sejin Kim, Michal Kazmierski, Kevin Qu, Jacob Peoples, Minoru Nakano, Vishwesh Ramanathan, Joseph Marsilla, Mattea Welch, Amber Simpson, Benjamin Haibe-Kains","doi":"10.12688/f1000research.127142.2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an open challenge.</p><p><strong>Methods: </strong>To address this issue, we developed Med-ImageTools, a new Python open-source software package to automate data curation and processing while allowing researchers to share their data processing configurations more easily, lowering the barrier for other researchers to reproduce published works.</p><p><strong>Use cases: </strong>We have demonstrated the efficiency of Med-ImageTools across three different datasets, resulting in significantly reduced processing times.</p><p><strong>Conclusions: </strong>The AutoPipeline feature will improve the accessibility of raw clinical datasets on public archives, such as the Cancer Imaging Archive (TCIA), the largest public repository of cancer imaging, allowing machine learning researchers to process analysis-ready formats without requiring deep domain knowledge.</p>","PeriodicalId":12260,"journal":{"name":"F1000Research","volume":"12 ","pages":"118"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"F1000Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/f1000research.127142.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

背景:机器学习和人工智能有望彻底改变我们利用医学影像数据改善护理的方式,但需要大量数据集来训练可在临床实践中使用的计算模型。然而,处理大型复杂的医学影像数据集仍是一项公开挑战:为了解决这个问题,我们开发了 Med-ImageTools,这是一个新的 Python 开源软件包,可以自动进行数据整理和处理,同时允许研究人员更轻松地共享他们的数据处理配置,降低其他研究人员复制已发表作品的门槛:我们在三个不同的数据集上展示了 Med-ImageTools 的效率,从而大大缩短了处理时间:自动管道功能将提高原始临床数据集在公共档案库(如最大的癌症成像公共档案库--癌症成像档案库(TCIA))中的可访问性,使机器学习研究人员无需深厚的领域知识即可处理分析就绪的格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Med-ImageTools: An open-source Python package for robust data processing pipelines and curating medical imaging data.

Background: Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an open challenge.

Methods: To address this issue, we developed Med-ImageTools, a new Python open-source software package to automate data curation and processing while allowing researchers to share their data processing configurations more easily, lowering the barrier for other researchers to reproduce published works.

Use cases: We have demonstrated the efficiency of Med-ImageTools across three different datasets, resulting in significantly reduced processing times.

Conclusions: The AutoPipeline feature will improve the accessibility of raw clinical datasets on public archives, such as the Cancer Imaging Archive (TCIA), the largest public repository of cancer imaging, allowing machine learning researchers to process analysis-ready formats without requiring deep domain knowledge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
F1000Research
F1000Research Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.00
自引率
0.00%
发文量
1646
审稿时长
1 weeks
期刊介绍: F1000Research publishes articles and other research outputs reporting basic scientific, scholarly, translational and clinical research across the physical and life sciences, engineering, medicine, social sciences and humanities. F1000Research is a scholarly publication platform set up for the scientific, scholarly and medical research community; each article has at least one author who is a qualified researcher, scholar or clinician actively working in their speciality and who has made a key contribution to the article. Articles must be original (not duplications). All research is suitable irrespective of the perceived level of interest or novelty; we welcome confirmatory and negative results, as well as null studies. F1000Research publishes different type of research, including clinical trials, systematic reviews, software tools, method articles, and many others. Reviews and Opinion articles providing a balanced and comprehensive overview of the latest discoveries in a particular field, or presenting a personal perspective on recent developments, are also welcome. See the full list of article types we accept for more information.
期刊最新文献
Recent Advances in Biopesticide Research and Development with a Focus on Microbials. Negative perceptions toward older adults and life satisfaction among community-dwelling older citizens in Japan. Unsteady MHD flow of tangent hyperbolic ternary hybrid nanofluid in a darcy-forchheimer porous medium over a permeable stretching sheet with variable thermal conductivity. Role, function, and expectations of research funding committees: Perspectives from committee members. Complications following miniplate insertion in maxillofacial fractures: a systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1