肿瘤和肿瘤周围放射学特征对乳腺癌新辅助化疗反应的预测价值:一项回顾性研究。

IF 9.7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiologia Medica Pub Date : 2025-02-24 DOI:10.1007/s11547-025-01969-1
Filippo Pesapane, Anna Rotili, Elisa Scalco, Davide Pupo, Serena Carriero, Federica Corso, Paolo De Marco, Daniela Origgi, Luca Nicosia, Federica Ferrari, Silvia Penco, Maria Pizzamiglio, Giovanna Rizzo, Enrico Cassano
{"title":"肿瘤和肿瘤周围放射学特征对乳腺癌新辅助化疗反应的预测价值:一项回顾性研究。","authors":"Filippo Pesapane, Anna Rotili, Elisa Scalco, Davide Pupo, Serena Carriero, Federica Corso, Paolo De Marco, Daniela Origgi, Luca Nicosia, Federica Ferrari, Silvia Penco, Maria Pizzamiglio, Giovanna Rizzo, Enrico Cassano","doi":"10.1007/s11547-025-01969-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neoadjuvant chemotherapy (NACT) improves surgical outcomes for breast cancer patients, with pathologic complete response (pCR) correlated with enhanced survival. The role of radiomics, particularly from peritumoral tissue, in predicting pCR remains under investigation.</p><p><strong>Methods: </strong>This retrospective study analyzed radiomic features from pretreatment dynamic contrast-enhanced breast MRI scans of 150 patients undergoing NACT. A proportional approach was used to define peritumoral zones, assessed both with a 10% and 30% extension, allowing more standardized assessments relative to the tumor size. Radiomic features were evaluated alongside clinical and biological data to predict pCR. The association of clinical/biological and radiomic features with pCR to NACT was evaluated using univariate and multivariate analysis, logistic regression, and a random forest model. A clinical/biological model, a radiomic model, and a combined clinical/biological and 4 radiomic models for predicting the response to NACT were constructed. Area under the curve (AUC) and 95% confidence intervals (CIs) were used to assess the performance of the models.</p><p><strong>Results: </strong>Ninety-five patients (average age 47 years) were finally included. HER2 + , basal-like molecular subtypes, and a high level of Ki67 (≥ 20%) were associated with a higher likelihood of pCR to NACT. The combined clinical-biological-radiomic model, especially with a 10% peritumoral extension, showed improved predictive accuracy (AUC 0.76, CI 0.65-0.85) compared to models using clinical-biological data alone (AUC 0.73, CI 0.63-0.83).</p><p><strong>Conclusions: </strong>Integrating peritumoral radiomic features with clinical and biological data enhances the prediction of pCR to NACT, underscoring the potential of a multifaceted approach in treatment personalization.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive value of tumoral and peritumoral radiomic features in neoadjuvant chemotherapy response for breast cancer: a retrospective study.\",\"authors\":\"Filippo Pesapane, Anna Rotili, Elisa Scalco, Davide Pupo, Serena Carriero, Federica Corso, Paolo De Marco, Daniela Origgi, Luca Nicosia, Federica Ferrari, Silvia Penco, Maria Pizzamiglio, Giovanna Rizzo, Enrico Cassano\",\"doi\":\"10.1007/s11547-025-01969-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Neoadjuvant chemotherapy (NACT) improves surgical outcomes for breast cancer patients, with pathologic complete response (pCR) correlated with enhanced survival. The role of radiomics, particularly from peritumoral tissue, in predicting pCR remains under investigation.</p><p><strong>Methods: </strong>This retrospective study analyzed radiomic features from pretreatment dynamic contrast-enhanced breast MRI scans of 150 patients undergoing NACT. A proportional approach was used to define peritumoral zones, assessed both with a 10% and 30% extension, allowing more standardized assessments relative to the tumor size. Radiomic features were evaluated alongside clinical and biological data to predict pCR. The association of clinical/biological and radiomic features with pCR to NACT was evaluated using univariate and multivariate analysis, logistic regression, and a random forest model. A clinical/biological model, a radiomic model, and a combined clinical/biological and 4 radiomic models for predicting the response to NACT were constructed. Area under the curve (AUC) and 95% confidence intervals (CIs) were used to assess the performance of the models.</p><p><strong>Results: </strong>Ninety-five patients (average age 47 years) were finally included. HER2 + , basal-like molecular subtypes, and a high level of Ki67 (≥ 20%) were associated with a higher likelihood of pCR to NACT. The combined clinical-biological-radiomic model, especially with a 10% peritumoral extension, showed improved predictive accuracy (AUC 0.76, CI 0.65-0.85) compared to models using clinical-biological data alone (AUC 0.73, CI 0.63-0.83).</p><p><strong>Conclusions: </strong>Integrating peritumoral radiomic features with clinical and biological data enhances the prediction of pCR to NACT, underscoring the potential of a multifaceted approach in treatment personalization.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-025-01969-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-01969-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive value of tumoral and peritumoral radiomic features in neoadjuvant chemotherapy response for breast cancer: a retrospective study.

Background: Neoadjuvant chemotherapy (NACT) improves surgical outcomes for breast cancer patients, with pathologic complete response (pCR) correlated with enhanced survival. The role of radiomics, particularly from peritumoral tissue, in predicting pCR remains under investigation.

Methods: This retrospective study analyzed radiomic features from pretreatment dynamic contrast-enhanced breast MRI scans of 150 patients undergoing NACT. A proportional approach was used to define peritumoral zones, assessed both with a 10% and 30% extension, allowing more standardized assessments relative to the tumor size. Radiomic features were evaluated alongside clinical and biological data to predict pCR. The association of clinical/biological and radiomic features with pCR to NACT was evaluated using univariate and multivariate analysis, logistic regression, and a random forest model. A clinical/biological model, a radiomic model, and a combined clinical/biological and 4 radiomic models for predicting the response to NACT were constructed. Area under the curve (AUC) and 95% confidence intervals (CIs) were used to assess the performance of the models.

Results: Ninety-five patients (average age 47 years) were finally included. HER2 + , basal-like molecular subtypes, and a high level of Ki67 (≥ 20%) were associated with a higher likelihood of pCR to NACT. The combined clinical-biological-radiomic model, especially with a 10% peritumoral extension, showed improved predictive accuracy (AUC 0.76, CI 0.65-0.85) compared to models using clinical-biological data alone (AUC 0.73, CI 0.63-0.83).

Conclusions: Integrating peritumoral radiomic features with clinical and biological data enhances the prediction of pCR to NACT, underscoring the potential of a multifaceted approach in treatment personalization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiologia Medica
Radiologia Medica 医学-核医学
CiteScore
14.10
自引率
7.90%
发文量
133
审稿时长
4-8 weeks
期刊介绍: Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.
期刊最新文献
Expanding horizons in theragnostics: from oncology to multidisciplinary applications. Spatial-demographic analysis model for brain metastases distribution. The radiologist as an independent "third party" to the patient and clinicians in the era of generative AI. Predictive value of tumoral and peritumoral radiomic features in neoadjuvant chemotherapy response for breast cancer: a retrospective study. Recent topics in musculoskeletal imaging focused on clinical applications of AI: How should radiologists approach and use AI?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1