IF 2.1 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Solid State Communications Pub Date : 2025-02-21 DOI:10.1016/j.ssc.2025.115878
B. Syad , A. Samih , A. Ben Zoubir , M. Es-Semyhy , R. El Fdil , E. Salmani , Z. Fadil , Fohad Mabood Husain , Chaitany Jayprakash Raorane
{"title":"First-principles study of KVTe half-Heusler alloy for spintronic and thermoelectric applications","authors":"B. Syad ,&nbsp;A. Samih ,&nbsp;A. Ben Zoubir ,&nbsp;M. Es-Semyhy ,&nbsp;R. El Fdil ,&nbsp;E. Salmani ,&nbsp;Z. Fadil ,&nbsp;Fohad Mabood Husain ,&nbsp;Chaitany Jayprakash Raorane","doi":"10.1016/j.ssc.2025.115878","DOIUrl":null,"url":null,"abstract":"<div><div>The present study undertook an examination of the diverse characteristics of the Half-Heusler KVTe alloy, encompassing its electronic, elastic, thermoelectric, mechanical, magnetic, and structural characteristics. In this investigation, the Density Functional Theory (DFT) was utilized, employing the GGA-PBE approximation. The findings of the analysis indicated that KVTe exhibited the greatest stability in the ferromagnetic (FM) configuration. An analysis of the density of states indicates that KVTe exhibits half-metallic behavior, suggesting its potential utility in spintronic applications. Moreover, a detailed examination of the elastic characteristics and mechanical response of the alloy indicates that KVTe exhibits robust mechanical stability. Finally, the results indicated that this material could be utilized in heat dissipation devices due to its promising thermoelectric properties with low Seebeck coefficient and high thermal conductivity.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"399 ","pages":"Article 115878"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825000535","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了半休斯勒 KVTe 合金的各种特性,包括其电子、弹性、热电、机械、磁性和结构特性。在这项研究中,使用了密度泛函理论(DFT),并采用了 GGA-PBE 近似方法。分析结果表明,KVTe 在铁磁(FM)构型中表现出最大的稳定性。对状态密度的分析表明,KVTe 具有半金属特性,这表明它在自旋电子应用中具有潜在的实用性。此外,对合金弹性特性和机械响应的详细研究表明,KVTe 具有强大的机械稳定性。最后,研究结果表明,这种材料具有低塞贝克系数和高热导率等良好的热电特性,可用于散热装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First-principles study of KVTe half-Heusler alloy for spintronic and thermoelectric applications
The present study undertook an examination of the diverse characteristics of the Half-Heusler KVTe alloy, encompassing its electronic, elastic, thermoelectric, mechanical, magnetic, and structural characteristics. In this investigation, the Density Functional Theory (DFT) was utilized, employing the GGA-PBE approximation. The findings of the analysis indicated that KVTe exhibited the greatest stability in the ferromagnetic (FM) configuration. An analysis of the density of states indicates that KVTe exhibits half-metallic behavior, suggesting its potential utility in spintronic applications. Moreover, a detailed examination of the elastic characteristics and mechanical response of the alloy indicates that KVTe exhibits robust mechanical stability. Finally, the results indicated that this material could be utilized in heat dissipation devices due to its promising thermoelectric properties with low Seebeck coefficient and high thermal conductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
期刊最新文献
A DFT Insight on the physical, optoelectronic and thermoelectric characteristics of half-Heusler NaZn(N/P) compounds for power generation applications Diisopropylammonium-halide (dipaHal) ferroelectric molecular crystals: Prospects, developments and controversies Nonlinear near-field microwave probing of Andreev bound states in ultrathin YBa2Cu3O7−x films Quantum spin-valley effect: Dynamical polarization and optical properties of silicene Crystallographic and photoluminescent features of Dy3+- activated Ca8ZnBi(VO4)7 nanosample produced by combustion for use in advanced solid - state lighting and latent fingerprinting applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1