Chang-Jin Yon, Byung-Chan Choi, Jung-Min Lee, Si-Wook Lee
{"title":"用于足踝肿瘤切除后骨缺损重建的个性化 3D 打印假体","authors":"Chang-Jin Yon, Byung-Chan Choi, Jung-Min Lee, Si-Wook Lee","doi":"10.3390/jfb16020062","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D)-printing technology is revolutionizing orthopedic oncology by providing precise, customized solutions for complex bone defects following tumor resection. Traditional modular endoprostheses are prone to complications such as fretting corrosion and implant failure, underscoring the need for innovative approaches. This case series reports on three patients treated with 3D-printed, patient-specific prostheses and cutting guides. Preoperative CT and MRI data were used to design implants tailored to each patient's anatomy, manufactured using electron beam melting technology with a titanium-aluminum-vanadium alloy. Functional outcomes showed significant improvements: in Case I, AOFAS improved from 71 to 96, and VAS decreased from 6 to 1; in Case II, AOFAS increased from 65 to 79, and VAS decreased from 5 to 3. Radiographic evaluations demonstrated stable prosthesis placement and early evidence of bone integration in Cases I and II, while in Case III, localized disease control was achieved before systemic progression. This case series highlights the transformative potential of 3D-printed prostheses in addressing the challenges of reconstructing anatomically complex defects. By enabling precise tumor resection and improving functional outcomes, this approach can advance current practices in orthopedic oncology. Further research should explore larger cohorts and use cost-effectiveness analyses to validate these findings and facilitate broader clinical adoption.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized 3D-Printed Prostheses for Bone Defect Reconstruction After Tumor Resection in the Foot and Ankle.\",\"authors\":\"Chang-Jin Yon, Byung-Chan Choi, Jung-Min Lee, Si-Wook Lee\",\"doi\":\"10.3390/jfb16020062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D)-printing technology is revolutionizing orthopedic oncology by providing precise, customized solutions for complex bone defects following tumor resection. Traditional modular endoprostheses are prone to complications such as fretting corrosion and implant failure, underscoring the need for innovative approaches. This case series reports on three patients treated with 3D-printed, patient-specific prostheses and cutting guides. Preoperative CT and MRI data were used to design implants tailored to each patient's anatomy, manufactured using electron beam melting technology with a titanium-aluminum-vanadium alloy. Functional outcomes showed significant improvements: in Case I, AOFAS improved from 71 to 96, and VAS decreased from 6 to 1; in Case II, AOFAS increased from 65 to 79, and VAS decreased from 5 to 3. Radiographic evaluations demonstrated stable prosthesis placement and early evidence of bone integration in Cases I and II, while in Case III, localized disease control was achieved before systemic progression. This case series highlights the transformative potential of 3D-printed prostheses in addressing the challenges of reconstructing anatomically complex defects. By enabling precise tumor resection and improving functional outcomes, this approach can advance current practices in orthopedic oncology. Further research should explore larger cohorts and use cost-effectiveness analyses to validate these findings and facilitate broader clinical adoption.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 2\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16020062\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16020062","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Personalized 3D-Printed Prostheses for Bone Defect Reconstruction After Tumor Resection in the Foot and Ankle.
Three-dimensional (3D)-printing technology is revolutionizing orthopedic oncology by providing precise, customized solutions for complex bone defects following tumor resection. Traditional modular endoprostheses are prone to complications such as fretting corrosion and implant failure, underscoring the need for innovative approaches. This case series reports on three patients treated with 3D-printed, patient-specific prostheses and cutting guides. Preoperative CT and MRI data were used to design implants tailored to each patient's anatomy, manufactured using electron beam melting technology with a titanium-aluminum-vanadium alloy. Functional outcomes showed significant improvements: in Case I, AOFAS improved from 71 to 96, and VAS decreased from 6 to 1; in Case II, AOFAS increased from 65 to 79, and VAS decreased from 5 to 3. Radiographic evaluations demonstrated stable prosthesis placement and early evidence of bone integration in Cases I and II, while in Case III, localized disease control was achieved before systemic progression. This case series highlights the transformative potential of 3D-printed prostheses in addressing the challenges of reconstructing anatomically complex defects. By enabling precise tumor resection and improving functional outcomes, this approach can advance current practices in orthopedic oncology. Further research should explore larger cohorts and use cost-effectiveness analyses to validate these findings and facilitate broader clinical adoption.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.